metal-organic compounds
Bis(1H-imidazole-κN3)bis(2-oxidopyridinium-3-carboxylato-κ2O2,O3)nickel(II)
aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn
In the II complex, [Ni(C6H4NO3)2(C3H4N2)2], the NiII atom is located on a twofold rotation axis and is chelated by two oxidopyridiniumcarboxylate anions and further cis-coordinated by two imidazole ligands in a distorted cis-N2O4 octahedral geometry. The C—O bond distance of 1.2573 (19) Å found for the non-coordinating O atom of the carboxylate group indicates significant delocalization of π-electron density over this residue. Similarly, the C—O bond distance of 1.260 (2) Å in the heteroaromatic ring indicates delocalization between the deprotonated hydroxy group and the pyridinium ring. The uncoordinated carboxylate O atom links with the imidazole and pyridinium rings of adjacent molecules via N—H⋯O and C—H⋯O hydrogen bonding, leading to a two-dimensional array parallel to (100).
of the title NiRelated literature
For the nature of π-π stacking, see: Deisenhofer & Michel (1989); Xu et al. (2007); Li et al. (2005). For the short C—O bond distance between a pyridine ring and hydroxy-O atom in metal complexes of 2-oxidopyridinium-3-carboxylate, see: Yao et al. (2004); Yan & Hu (2007a,b); Wen & Liu (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809028347/tk2499sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809028347/tk2499Isup2.hkl
2-Hydroxy-pyridine-3-carboxylic acid (0.13 g, 1 mmol), NaOH (0.04 g, 1 mmol), imidazole (0.14 g, 2 mmol) and NiCl2.6H2O (0.24 g, 1 mmol) were dissolved in water (15 ml). The solution was refluxed for 4.5 h. After cooling to room temperature, the solution was filtered. Single crystals of (I) were obtained from the filtrate after one week.
H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in riding model approximation with Uiso(H) = 1.2Ueq(C,N).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I) showing 40% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) 1 - x, y, 1/2 - z]. |
[Ni(C6H4NO3)2(C3H4N2)2] | F(000) = 968 |
Mr = 471.08 | Dx = 1.589 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3268 reflections |
a = 16.5603 (12) Å | θ = 2.5–25.0° |
b = 9.9687 (7) Å | µ = 1.04 mm−1 |
c = 12.7981 (9) Å | T = 294 K |
β = 111.203 (2)° | Block, green |
V = 1969.7 (2) Å3 | 0.28 × 0.22 × 0.18 mm |
Z = 4 |
Rigaku R-AXIS RAPID IP diffractometer | 1934 independent reflections |
Radiation source: fine-focus sealed tube | 1690 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 10.00 pixels mm-1 | θmax = 26.0°, θmin = 2.4° |
ω scans | h = −20→20 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −11→12 |
Tmin = 0.730, Tmax = 0.830 | l = −15→15 |
10787 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.067 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0299P)2 + 1.5451P] where P = (Fo2 + 2Fc2)/3 |
1934 reflections | (Δ/σ)max = 0.001 |
141 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
[Ni(C6H4NO3)2(C3H4N2)2] | V = 1969.7 (2) Å3 |
Mr = 471.08 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.5603 (12) Å | µ = 1.04 mm−1 |
b = 9.9687 (7) Å | T = 294 K |
c = 12.7981 (9) Å | 0.28 × 0.22 × 0.18 mm |
β = 111.203 (2)° |
Rigaku R-AXIS RAPID IP diffractometer | 1934 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1690 reflections with I > 2σ(I) |
Tmin = 0.730, Tmax = 0.830 | Rint = 0.026 |
10787 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.067 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.26 e Å−3 |
1934 reflections | Δρmin = −0.23 e Å−3 |
141 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni | 0.5000 | 0.24819 (3) | 0.2500 | 0.02609 (11) | |
N1 | 0.61183 (10) | −0.12600 (15) | 0.30054 (12) | 0.0340 (4) | |
H1 | 0.6130 | −0.1389 | 0.2346 | 0.041* | |
N2 | 0.58315 (9) | 0.39012 (14) | 0.22850 (12) | 0.0307 (3) | |
N3 | 0.62487 (11) | 0.55962 (16) | 0.15138 (14) | 0.0413 (4) | |
H3 | 0.6224 | 0.6275 | 0.1088 | 0.050* | |
O1 | 0.55981 (9) | 0.25034 (11) | 0.42031 (10) | 0.0345 (3) | |
O2 | 0.62229 (8) | 0.17047 (12) | 0.59099 (9) | 0.0370 (3) | |
O3 | 0.58766 (8) | 0.09254 (12) | 0.25646 (9) | 0.0320 (3) | |
C1 | 0.59865 (11) | 0.00219 (17) | 0.32922 (13) | 0.0269 (4) | |
C2 | 0.60022 (10) | 0.01871 (17) | 0.44182 (13) | 0.0270 (4) | |
C3 | 0.61083 (12) | −0.09161 (18) | 0.50917 (14) | 0.0347 (4) | |
H3A | 0.6108 | −0.0806 | 0.5813 | 0.042* | |
C4 | 0.62173 (15) | −0.22061 (19) | 0.47285 (16) | 0.0429 (5) | |
H4 | 0.6278 | −0.2947 | 0.5192 | 0.051* | |
C5 | 0.62318 (15) | −0.23420 (18) | 0.36860 (17) | 0.0418 (5) | |
H5 | 0.6320 | −0.3184 | 0.3433 | 0.050* | |
C6 | 0.59302 (11) | 0.15609 (17) | 0.48631 (13) | 0.0273 (4) | |
C7 | 0.55757 (13) | 0.48832 (18) | 0.15514 (15) | 0.0362 (4) | |
H7 | 0.5001 | 0.5059 | 0.1115 | 0.043* | |
C8 | 0.67175 (12) | 0.4006 (2) | 0.27398 (16) | 0.0404 (4) | |
H8 | 0.7082 | 0.3442 | 0.3287 | 0.049* | |
C9 | 0.69804 (13) | 0.5053 (2) | 0.22712 (18) | 0.0456 (5) | |
H9 | 0.7547 | 0.5343 | 0.2434 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.03550 (19) | 0.02420 (17) | 0.01909 (17) | 0.000 | 0.01048 (13) | 0.000 |
N1 | 0.0520 (9) | 0.0317 (8) | 0.0228 (7) | 0.0040 (7) | 0.0192 (7) | −0.0015 (6) |
N2 | 0.0348 (8) | 0.0290 (8) | 0.0276 (7) | −0.0003 (6) | 0.0106 (6) | 0.0026 (6) |
N3 | 0.0577 (11) | 0.0309 (8) | 0.0428 (9) | −0.0040 (7) | 0.0272 (8) | 0.0049 (7) |
O1 | 0.0514 (8) | 0.0281 (6) | 0.0213 (6) | 0.0057 (5) | 0.0098 (6) | 0.0002 (5) |
O2 | 0.0551 (8) | 0.0371 (7) | 0.0175 (6) | 0.0040 (6) | 0.0117 (5) | −0.0025 (5) |
O3 | 0.0475 (7) | 0.0306 (6) | 0.0229 (6) | 0.0056 (5) | 0.0190 (5) | 0.0040 (5) |
C1 | 0.0297 (8) | 0.0290 (9) | 0.0234 (8) | 0.0004 (7) | 0.0114 (7) | −0.0011 (7) |
C2 | 0.0313 (9) | 0.0301 (9) | 0.0207 (8) | 0.0008 (7) | 0.0109 (7) | −0.0010 (7) |
C3 | 0.0479 (11) | 0.0357 (10) | 0.0230 (9) | 0.0020 (8) | 0.0156 (8) | 0.0016 (7) |
C4 | 0.0682 (14) | 0.0303 (10) | 0.0339 (10) | 0.0057 (9) | 0.0229 (10) | 0.0069 (8) |
C5 | 0.0647 (14) | 0.0268 (10) | 0.0370 (11) | 0.0057 (9) | 0.0222 (10) | −0.0012 (8) |
C6 | 0.0309 (9) | 0.0317 (9) | 0.0220 (8) | −0.0007 (7) | 0.0127 (7) | −0.0021 (7) |
C7 | 0.0415 (10) | 0.0335 (10) | 0.0335 (10) | −0.0003 (8) | 0.0134 (8) | 0.0034 (8) |
C8 | 0.0371 (10) | 0.0394 (11) | 0.0419 (11) | 0.0031 (8) | 0.0108 (8) | 0.0026 (8) |
C9 | 0.0393 (11) | 0.0432 (11) | 0.0589 (13) | −0.0039 (9) | 0.0233 (10) | −0.0059 (10) |
Ni—O1i | 2.0422 (12) | O2—C6 | 1.2573 (19) |
Ni—O1 | 2.0422 (12) | O3—C1 | 1.260 (2) |
Ni—O3i | 2.1059 (12) | C1—C2 | 1.441 (2) |
Ni—O3 | 2.1058 (12) | C2—C3 | 1.369 (2) |
Ni—N2 | 2.0610 (14) | C2—C6 | 1.504 (2) |
Ni—N2i | 2.0610 (14) | C3—C4 | 1.401 (3) |
N1—C5 | 1.356 (2) | C3—H3A | 0.9300 |
N1—C1 | 1.369 (2) | C4—C5 | 1.350 (3) |
N1—H1 | 0.8600 | C4—H4 | 0.9300 |
N2—C7 | 1.316 (2) | C5—H5 | 0.9300 |
N2—C8 | 1.373 (2) | C7—H7 | 0.9300 |
N3—C7 | 1.337 (2) | C8—C9 | 1.352 (3) |
N3—C9 | 1.361 (3) | C8—H8 | 0.9300 |
N3—H3 | 0.8600 | C9—H9 | 0.9300 |
O1—C6 | 1.250 (2) | ||
O1i—Ni—O1 | 178.80 (6) | O3—C1—C2 | 127.05 (15) |
O1i—Ni—N2 | 86.55 (5) | N1—C1—C2 | 115.33 (14) |
O1—Ni—N2 | 92.62 (5) | C3—C2—C1 | 119.31 (15) |
O1i—Ni—N2i | 92.62 (5) | C3—C2—C6 | 120.19 (14) |
O1—Ni—N2i | 86.55 (5) | C1—C2—C6 | 120.47 (14) |
N2—Ni—N2i | 93.29 (8) | C2—C3—C4 | 122.08 (16) |
O1i—Ni—O3i | 84.52 (5) | C2—C3—H3A | 119.0 |
O1—Ni—O3i | 96.37 (5) | C4—C3—H3A | 119.0 |
N2—Ni—O3i | 170.03 (5) | C5—C4—C3 | 118.07 (17) |
N2i—Ni—O3i | 91.53 (5) | C5—C4—H4 | 121.0 |
O1i—Ni—O3 | 96.37 (5) | C3—C4—H4 | 121.0 |
O1—Ni—O3 | 84.52 (5) | C4—C5—N1 | 120.47 (17) |
N2—Ni—O3 | 91.53 (5) | C4—C5—H5 | 119.8 |
N2i—Ni—O3 | 170.03 (5) | N1—C5—H5 | 119.8 |
O3i—Ni—O3 | 85.08 (7) | O1—C6—O2 | 122.70 (15) |
C5—N1—C1 | 124.68 (15) | O1—C6—C2 | 120.28 (14) |
C5—N1—H1 | 117.7 | O2—C6—C2 | 117.02 (15) |
C1—N1—H1 | 117.7 | N2—C7—N3 | 111.32 (17) |
C7—N2—C8 | 105.36 (15) | N2—C7—H7 | 124.3 |
C7—N2—Ni | 123.21 (12) | N3—C7—H7 | 124.3 |
C8—N2—Ni | 131.20 (12) | C9—C8—N2 | 109.68 (17) |
C7—N3—C9 | 107.57 (16) | C9—C8—H8 | 125.2 |
C7—N3—H3 | 126.2 | N2—C8—H8 | 125.2 |
C9—N3—H3 | 126.2 | C8—C9—N3 | 106.06 (17) |
C6—O1—Ni | 129.67 (11) | C8—C9—H9 | 127.0 |
C1—O3—Ni | 117.96 (10) | N3—C9—H9 | 127.0 |
O3—C1—N1 | 117.62 (14) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2ii | 0.86 | 1.93 | 2.7848 (19) | 177 |
N3—H3···O2iii | 0.86 | 2.03 | 2.796 (2) | 148 |
C3—H3A···O3iv | 0.93 | 2.41 | 3.323 (2) | 167 |
Symmetry codes: (ii) x, −y, z−1/2; (iii) x, −y+1, z−1/2; (iv) x, −y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C6H4NO3)2(C3H4N2)2] |
Mr | 471.08 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 294 |
a, b, c (Å) | 16.5603 (12), 9.9687 (7), 12.7981 (9) |
β (°) | 111.203 (2) |
V (Å3) | 1969.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.04 |
Crystal size (mm) | 0.28 × 0.22 × 0.18 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.730, 0.830 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10787, 1934, 1690 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.067, 1.09 |
No. of reflections | 1934 |
No. of parameters | 141 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.23 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 1.93 | 2.7848 (19) | 177 |
N3—H3···O2ii | 0.86 | 2.03 | 2.796 (2) | 148 |
C3—H3A···O3iii | 0.93 | 2.41 | 3.323 (2) | 167 |
Symmetry codes: (i) x, −y, z−1/2; (ii) x, −y+1, z−1/2; (iii) x, −y, z+1/2. |
Acknowledgements
The project was supported by the ZIJIN project of Zhejiang University, China.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170. CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wen, D.-C. & Liu, S.-X. (2007). Chin. J. Struct. Chem. 26, 1281–1284. CAS Google Scholar
Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yan, H.-Y. & Hu, T.-Q. (2007a). Acta Cryst. E63, m2325. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yan, H.-Y. & Hu, T.-Q. (2007b). Acta Cryst. E63, m2326. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yao, Y., Cai, Q., Kou, H., Li, H., Wang, D., Yu, R., Chen, Y. & Xing, X. (2004). Chem. Lett. 33, 1270–1271. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As π-π stacking between aromatic rings is correlated with electron transfer process in some biological systems (Deisenhofer & Michel, 1989), metal complexes incorporating aromatic ligands have attracted much attention. As a part of an on-going investigation of π-π stacking (Xu et al., 2007a, b; Li et al., 2005), the title complex, (I), has been prepared and its crystal structure reported herein.
The analysis of (I) shows the Ni atom to be located on a 2-fold axis and to be chelated by two oxidopyridinium-carboxylate anions and two cis-orientated imidazole ligands to complete a distorted octahedral coordination geometry (Fig. 1). The carboxylate group is twisted with respect to the benzene ring with a dihedral angle of 22.09 (11)°. The C1—O3 bond distance of 1.260 (2) Å is much shorter than a normal single C—O bond, indicating delocalization of π-electron density over the deprotonated hydroxy group and the pyridinium ring, an observation which agrees with similiar features found in the other transition metal complexes of oxidopyridinium-carboxylate (Yao et al., 2004; Yan & Hu, 2007a,b; Wen & Liu, 2007).
The uncoordinated carboxyl-O atom simutaneously links the imidazole and pyridinium rings via N—H···O hydrogen bonding leading to a 2-D array (Table 2). Weak C—H···O hydrogen bonding is also present in the crystal structure but no π-π stacking is evident.