metal-organic compounds
Dichlorido(2,9-dimethyl-1,10-phenanthroline-κ2N,N′)copper(II)
aDepartment of Biochemistry, Jingdezhen Comprehesive College, Jingdezhen, Jiangxi 333000, People's Republic of China, and bThe Key Laboratory of Coordination Chemistry of Jiangxi Province, Jian 343009, People's Republic of China
*Correspondence e-mail: bingshanwang09@126.com
In the title compound, [CuCl2(C14H12N2)], the complex molecule has m symmetry, with the mirror plane oriented parallel to the planar molecule and the ligated CuII atom. The metal centre has a distorted tetrahedral coordination formed by two N atoms from one 2,9-dimethyl-1,10-phenanthroline ligand and two Cl atoms. There is intermolecular π–π stacking between adjacent 2,9-dimethyl-1,10-phenanthroline ligands, with a centroid–centroid distance of 3.733 (2)Å.
Related literature
For backgroud to π-π stacking in metal complexes of phenanthroline and its derivatives, benzimidazole and quinoline, see: Wall et al. (1999); Wu et al. (2003); Pan & Xu (2004); Li et al. (2005). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809034187/at2860sup1.cif
contains datablock global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809034187/at2860Isup2.hkl
Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Copper chloride dihydrate (170.5 mg, 1 mmol), 2,9-Dimethyl-1,10-phenanthroline (416.5 mg, 2 mmol) and distilled water (10 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 433 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small blue crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.
H atoms were positioned geometrically, with C—H = 0.93 - 0.96 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 or 1.5Ueq(C).
Data collection: APEX2 (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. A packing diagram of (I). |
[CuCl2(C14H12N2)] | F(000) = 692 |
Mr = 342.70 | Dx = 1.536 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 5426 reflections |
a = 11.239 (2) Å | θ = 2.3–28.0° |
b = 7.4651 (18) Å | µ = 1.82 mm−1 |
c = 17.663 (5) Å | T = 273 K |
V = 1481.9 (6) Å3 | Plane, blue |
Z = 4 | 0.30 × 0.28 × 0.21 mm |
Bruker APEXII area-detector diffractometer | 1951 independent reflections |
Radiation source: fine-focus sealed tube | 1601 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −14→14 |
Tmin = 0.611, Tmax = 0.701 | k = −9→9 |
10738 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0553P)2 + 0.1694P] where P = (Fo2 + 2Fc2)/3 |
1951 reflections | (Δ/σ)max = 0.001 |
114 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
[CuCl2(C14H12N2)] | V = 1481.9 (6) Å3 |
Mr = 342.70 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 11.239 (2) Å | µ = 1.82 mm−1 |
b = 7.4651 (18) Å | T = 273 K |
c = 17.663 (5) Å | 0.30 × 0.28 × 0.21 mm |
Bruker APEXII area-detector diffractometer | 1951 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1601 reflections with I > 2σ(I) |
Tmin = 0.611, Tmax = 0.701 | Rint = 0.023 |
10738 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.41 e Å−3 |
1951 reflections | Δρmin = −0.29 e Å−3 |
114 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.76127 (2) | 0.7500 | 0.610028 (14) | 0.04178 (12) | |
N1 | 0.79467 (16) | 0.7500 | 0.49476 (10) | 0.0418 (4) | |
N2 | 0.58758 (17) | 0.7500 | 0.57229 (11) | 0.0445 (4) | |
C1 | 1.0098 (2) | 0.7500 | 0.50503 (18) | 0.0684 (8) | |
H1A | 1.0316 | 0.8711 | 0.5170 | 0.103* | 0.50 |
H1B | 1.0728 | 0.6946 | 0.4767 | 0.103* | 0.50 |
H1C | 0.9967 | 0.6843 | 0.5510 | 0.103* | 0.50 |
C13 | 0.6920 (2) | 0.7500 | 0.45450 (12) | 0.0406 (5) | |
C11 | 0.4872 (3) | 0.7500 | 0.61234 (14) | 0.0558 (6) | |
C2 | 0.8982 (2) | 0.7500 | 0.45874 (15) | 0.0517 (6) | |
C12 | 0.58155 (19) | 0.7500 | 0.49535 (12) | 0.0403 (5) | |
C14 | 0.4987 (3) | 0.7500 | 0.69623 (17) | 0.0803 (10) | |
H14A | 0.5697 | 0.8130 | 0.7105 | 0.120* | 0.50 |
H14B | 0.5030 | 0.6288 | 0.7142 | 0.120* | 0.50 |
H14C | 0.4307 | 0.8082 | 0.7182 | 0.120* | 0.50 |
C10 | 0.3763 (2) | 0.7500 | 0.5751 (2) | 0.0711 (8) | |
H10 | 0.3067 | 0.7500 | 0.6035 | 0.085* | |
C8 | 0.4741 (2) | 0.7500 | 0.45551 (15) | 0.0500 (6) | |
C7 | 0.4757 (3) | 0.7500 | 0.37518 (16) | 0.0624 (7) | |
H7 | 0.4041 | 0.7500 | 0.3487 | 0.075* | |
C5 | 0.6901 (2) | 0.7500 | 0.37527 (13) | 0.0502 (6) | |
C6 | 0.5787 (3) | 0.7500 | 0.33689 (15) | 0.0610 (7) | |
H6 | 0.5774 | 0.7500 | 0.2842 | 0.073* | |
C9 | 0.3695 (2) | 0.7500 | 0.49900 (19) | 0.0664 (8) | |
H9 | 0.2957 | 0.7500 | 0.4753 | 0.080* | |
C3 | 0.9025 (3) | 0.7500 | 0.37937 (16) | 0.0676 (8) | |
H3 | 0.9756 | 0.7500 | 0.3547 | 0.081* | |
C4 | 0.8005 (3) | 0.7500 | 0.33845 (16) | 0.0687 (8) | |
H4 | 0.8038 | 0.7500 | 0.2858 | 0.082* | |
Cl1 | 0.81305 (5) | 1.00503 (6) | 0.66249 (3) | 0.06566 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.04754 (18) | 0.0423 (2) | 0.03548 (17) | 0.000 | −0.00528 (11) | 0.000 |
N1 | 0.0374 (9) | 0.0471 (11) | 0.0408 (10) | 0.000 | 0.0006 (8) | 0.000 |
N2 | 0.0450 (10) | 0.0441 (11) | 0.0446 (10) | 0.000 | 0.0081 (8) | 0.000 |
C1 | 0.0403 (13) | 0.082 (2) | 0.083 (2) | 0.000 | −0.0043 (13) | 0.000 |
C13 | 0.0403 (11) | 0.0429 (13) | 0.0387 (10) | 0.000 | 0.0002 (9) | 0.000 |
C11 | 0.0560 (14) | 0.0532 (16) | 0.0581 (15) | 0.000 | 0.0192 (12) | 0.000 |
C2 | 0.0404 (11) | 0.0570 (16) | 0.0576 (14) | 0.000 | 0.0053 (10) | 0.000 |
C12 | 0.0393 (11) | 0.0395 (12) | 0.0421 (11) | 0.000 | 0.0014 (9) | 0.000 |
C14 | 0.094 (2) | 0.090 (2) | 0.0565 (16) | 0.000 | 0.0325 (17) | 0.000 |
C10 | 0.0436 (14) | 0.078 (2) | 0.092 (2) | 0.000 | 0.0226 (15) | 0.000 |
C8 | 0.0412 (12) | 0.0492 (14) | 0.0596 (14) | 0.000 | −0.0044 (10) | 0.000 |
C7 | 0.0556 (15) | 0.0730 (19) | 0.0586 (15) | 0.000 | −0.0195 (12) | 0.000 |
C5 | 0.0559 (14) | 0.0558 (16) | 0.0388 (11) | 0.000 | 0.0009 (10) | 0.000 |
C6 | 0.0660 (17) | 0.0736 (19) | 0.0434 (13) | 0.000 | −0.0118 (12) | 0.000 |
C9 | 0.0372 (12) | 0.078 (2) | 0.084 (2) | 0.000 | 0.0030 (12) | 0.000 |
C3 | 0.0508 (15) | 0.096 (2) | 0.0560 (16) | 0.000 | 0.0176 (12) | 0.000 |
C4 | 0.0656 (17) | 0.095 (3) | 0.0449 (14) | 0.000 | 0.0135 (13) | 0.000 |
Cl1 | 0.0766 (3) | 0.0502 (3) | 0.0702 (3) | −0.0019 (2) | −0.0167 (3) | −0.0113 (2) |
Cu1—Cl1 | 2.1958 (6) | C12—C8 | 1.398 (3) |
Cu1—Cl1i | 2.1958 (6) | C14—H14A | 0.9600 |
Cu1—N1 | 2.070 (2) | C14—H14B | 0.9600 |
Cu1—N2 | 2.063 (2) | C14—H14C | 0.9600 |
N1—C2 | 1.326 (3) | C10—C9 | 1.346 (5) |
N1—C13 | 1.355 (3) | C10—H10 | 0.9300 |
N2—C11 | 1.331 (3) | C8—C9 | 1.404 (4) |
N2—C12 | 1.361 (3) | C8—C7 | 1.419 (4) |
C1—C2 | 1.498 (4) | C7—C6 | 1.341 (4) |
C1—H1A | 0.9600 | C7—H7 | 0.9300 |
C1—H1B | 0.9600 | C5—C4 | 1.401 (4) |
C1—H1C | 0.9600 | C5—C6 | 1.423 (4) |
C13—C5 | 1.400 (3) | C6—H6 | 0.9300 |
C13—C12 | 1.436 (3) | C9—H9 | 0.9300 |
C11—C10 | 1.409 (4) | C3—C4 | 1.355 (4) |
C11—C14 | 1.487 (4) | C3—H3 | 0.9300 |
C2—C3 | 1.403 (3) | C4—H4 | 0.9300 |
Cl1—Cu1—Cl1i | 120.23 (3) | C11—C14—H14A | 109.5 |
N1—Cu1—Cl1 | 111.53 (3) | C11—C14—H14B | 109.5 |
N1—Cu1—Cl1i | 111.53 (3) | H14A—C14—H14B | 109.5 |
N2—Cu1—N1 | 81.60 (7) | C11—C14—H14C | 109.5 |
N2—Cu1—Cl1 | 112.78 (2) | H14A—C14—H14C | 109.5 |
N2—Cu1—Cl1i | 112.78 (2) | H14B—C14—H14C | 109.5 |
C2—N1—C13 | 119.7 (2) | C9—C10—C11 | 121.1 (3) |
C2—N1—Cu1 | 129.12 (17) | C9—C10—H10 | 119.4 |
C13—N1—Cu1 | 111.21 (15) | C11—C10—H10 | 119.4 |
C11—N2—C12 | 119.2 (2) | C12—C8—C9 | 116.6 (2) |
C11—N2—Cu1 | 129.05 (18) | C12—C8—C7 | 119.5 (2) |
C12—N2—Cu1 | 111.71 (14) | C9—C8—C7 | 123.9 (2) |
C2—C1—H1A | 109.5 | C6—C7—C8 | 121.0 (2) |
C2—C1—H1B | 109.5 | C6—C7—H7 | 119.5 |
H1A—C1—H1B | 109.5 | C8—C7—H7 | 119.5 |
C2—C1—H1C | 109.5 | C13—C5—C4 | 116.7 (2) |
H1A—C1—H1C | 109.5 | C13—C5—C6 | 119.4 (2) |
H1B—C1—H1C | 109.5 | C4—C5—C6 | 123.9 (2) |
N1—C13—C5 | 122.6 (2) | C7—C6—C5 | 121.3 (2) |
N1—C13—C12 | 118.2 (2) | C7—C6—H6 | 119.4 |
C5—C13—C12 | 119.2 (2) | C5—C6—H6 | 119.4 |
N2—C11—C10 | 120.1 (2) | C10—C9—C8 | 119.9 (3) |
N2—C11—C14 | 117.1 (3) | C10—C9—H9 | 120.0 |
C10—C11—C14 | 122.8 (3) | C8—C9—H9 | 120.0 |
N1—C2—C3 | 120.6 (2) | C4—C3—C2 | 120.3 (2) |
N1—C2—C1 | 118.2 (2) | C4—C3—H3 | 119.9 |
C3—C2—C1 | 121.1 (2) | C2—C3—H3 | 119.9 |
N2—C12—C8 | 123.1 (2) | C3—C4—C5 | 120.1 (3) |
N2—C12—C13 | 117.30 (19) | C3—C4—H4 | 119.9 |
C8—C12—C13 | 119.6 (2) | C5—C4—H4 | 119.9 |
Symmetry code: (i) x, −y+3/2, z. |
Experimental details
Crystal data | |
Chemical formula | [CuCl2(C14H12N2)] |
Mr | 342.70 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 273 |
a, b, c (Å) | 11.239 (2), 7.4651 (18), 17.663 (5) |
V (Å3) | 1481.9 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.82 |
Crystal size (mm) | 0.30 × 0.28 × 0.21 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.611, 0.701 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10738, 1951, 1601 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.083, 1.00 |
No. of reflections | 1951 |
No. of parameters | 114 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.29 |
Computer programs: APEX2 (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).
Acknowledgements
We thank the Youth Program of Jingdezhen Comprehesive College for financial support of this work.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710–4711. Web of Science CSD CrossRef CAS Google Scholar
Wu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809–m811. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, simple metal complexes of phenanthroline and its derivatives with π-π stacking have attracted great interest because they can be used to study the hydrolysis of biologically important phosphate diesters with poor leaving groups (Wall et al., 1999). A series of metal complexes incorporating different aromatic ligands such as phenanthroline(phen), benzimidazole and quinoline have been prepared and their crystal structures provide useful information about π-π stacking (Wu et al., 2003; Pan & Xu, 2004; Li et al., 2005). We report herein the crystal structure of the title compound, (I).
In the molecule of the title compound, (I), (Fig. 1), the bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The two N atoms of one phen ligand and two Cl atoms are coordinated to CuII atom, in a distorted tetrahedron arrangement. The Cu—N bonds [average 2.0665 Å] are somewhat shorter than the Cu—Cl distances [average 2.1958 Å].
In the crystal structure, there is intermolecular π-π stacking between adjacent phen, with a centroid-centroid distance of 3.733 Å (symmetry code: –x, y+1/2, -z). These π-π stacking interactions lead to a supramolecular network structure (Fig. 2).