metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1154-m1155

Bis(tetra­phenyl­phospho­nium) tris­­[N-(methyl­sulfon­yl)di­thio­carbimato(2−)-κ2S,S′]stannate(IV)

aDepartamento de Química, UFV, 36570-000 Viçosa, MG, Brazil, and bInstituto de Física de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP, Brazil
*Correspondence e-mail: rodrigocorrea@ursa.ifsc.usp.br

(Received 1 July 2009; accepted 25 August 2009; online 5 September 2009)

In the title complex, (C24H20P)2[Sn(C2H3NO2S3)3], the SnIV atom is coordinated by three N-(methyl­sulfon­yl)dithio­carbimate bidentate ligands through the anionic S atoms in a slightly distorted octa­hedral coordination geometry. There is one half-mol­ecule in the asymmetric unit; the complex is located on a crystallographic twofold rotation axis passing through the cation and bis­ecting one of the (non-symmetric) ligands, which appears thus disordered over two sites of equal occupancy. In the crystal structure, weak inter­molecular C—H⋯O and C—H⋯S inter­actions contribute to the packing stabilization.

Related literature

For general background to tin(IV) dithio­carbamates, see: Barone et al. (2002[Barone, G., Chaplin, T., Hibbert, T. G., Kana, A. T., Mahon, M. F., Molloy, K. C., Worsley Ian, D., Parkin, I. P. & Price, L. S. (2002). J. Chem. Soc. Dalton Trans. pp. 1085-1092.]); Coucouvanis (1979[Coucouvanis, D. (1979). Prog. Inorg. Chem. 22, 301-469.]); Heard (2005[Heard, P. J. (2005). Prog. Inorg. Chem. 53, 1-69.]); Menezes et al. (2005[Menezes, D. C., Vieira, F. T., de Lima, G. M., Porto, A. O., Cortés, M. E., Ardisson, J. D. & Albrecht-Schmitt, T. E. (2005). Eur. J. Med. Chem. 40, 1277-1282.]); Seth et al. (1992[Seth, N., Gupta, V. D., Nöth, H. & Thomann, M. (1992). Chem. Ber. 125, 1523-1528.]). For related structures of transition metal (Ni, Pt and Zn) complexes with dithio­carbimates derived from sulfonamides, see: Alves et al. (2009[Alves, L. C., Rubinger, M. M. M., Lindemann, R. H., Perpétuo, G. J., Janczak, J., Miranda, L. D. L., Zambolim, L. & Oliveira, M. R. L. (2009). J. Inorg. Biochem. 103, 1045-1053.]); Amim et al. (2008[Amim, R. S., Oliveira, M. R. L., Perpétuo, G. J., Janczak, J., Miranda, L. D. L. & Rubinger, M. M. M. (2008). Polyhedron, 27, 1891-1897.]); Franca et al. (2006[Franca, E. F., Oliveira, M. R. L., Guilardi, S., Andrade, R. P., Lindemann, R. H., Amim, A. Jr, Ellena, J., De Bellis, V. M. & Rubinger, M. M. M. (2006). Polyhedron, 25, 2119-2126.]); Menezes et al. (2005[Menezes, D. C., Vieira, F. T., de Lima, G. M., Porto, A. O., Cortés, M. E., Ardisson, J. D. & Albrecht-Schmitt, T. E. (2005). Eur. J. Med. Chem. 40, 1277-1282.]). For the ligand synthesis, see: Hartke (1966[Hartke, K. (1966). Arch. Pharm. 299, 174-178.]).

[Scheme 1]

Experimental

Crystal data
  • (C24H20P)2[Sn(C2H3NO2S3)3]

  • Mr = 1305.13

  • Monoclinic, C 2/c

  • a = 18.5563 (3) Å

  • b = 13.6096 (2) Å

  • c = 23.3203 (3) Å

  • β = 91.355 (1)°

  • V = 5887.75 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 298 K

  • 0.40 × 0.11 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.726, Tmax = 0.943

  • 17695 measured reflections

  • 5178 independent reflections

  • 4871 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.138

  • S = 1.25

  • 5178 reflections

  • 372 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O4i 0.96 2.35 3.284 (13) 166
C16—H16⋯O3ii 0.93 2.60 3.2203 (10) 125
C19—H19⋯O1iii 0.93 2.47 3.296 (7) 148
C28—H28⋯S4ii 0.93 2.69 3.345 (5) 128
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

We became interested in the syntheses and characterization of tin(IV) dithiocarbimate complexes due to their similarity with the dithiocarbamate analogues, which have shown antifungal activity (Menezes et al., 2005). Tin dithiocarbamates have also been used as molecular tin sulfide precursors for semiconductor films (Barone et al., 2002). To the best of our knowledge, the title compound is the first member of a class of Sn complexes with general formula [Sn(RSO2N=CS2)3]2-. This class is related to tin(IV) dithiocarbamates (Coucouvanis, 1979; Heard, 2005 and Seth et al., 1992). However, differently from the dithiocarbamates, these are anionic species. Some crystallographic structures of transition metal (Ni, Pt and Zn) complexes with dithiocarbimates derivated from sulfonamides are described in the literature (Alves et al.,2009; Amim et al., 2008 and Franca et al.; 2006).

The title compound, which is quite stable under ambient conditions, comprises a complex dianion and two tetraphenylphosphonium cations, with the formula (Ph4P)2[Sn(CH3SO2N=CS2)2] (scheme). To the best of our knowledge the tris(methyldithiocarbimato)estannate(IV) anion is the first example of tin complexes with dithiocarbimate ligands derived from sulfonamides. So, in this paper we report the crystal structure of the title compound. The complex presents an octahedral environment around the SnIV atom with the ligands coordinating in a relatively distorted manner (Figure 1). The Sn—S bond lengths lie within the range 2.443 (3)–2.646 (2) Å. In the chelate rings the C—S fragments present bond lengths which are characteristic of a single bond [1.75 (1)–1.77 (1) Å]. These values are in agreement with related structures (Menezes et al., 2005). One of the ligands appears disordered into two sites (arounf the twofold symmetry axis) with occupancy factor 0.5. Weak intermolecular C—H···O and C—H···S interactions contribute to packing stabilization (Table 1). Figure 2 shows a crystal packing view of the complex projected onto the bc plane, where two independent sheets are clearly visible: one of them formed by the complex (green in Figure 2) and another defined by phosphonium units (blue in Figure 2). Both sheets are linked by weak hydrogen bonds (Table 1).

Related literature top

For general background to tin(IV) dithiocarbamates, see: Barone et al. (2002); Coucouvanis (1979); Heard (2005); Menezes et al. (2005); Seth et al. (1992). For related structures of transition metal (Ni, Pt and Zn) complexes with dithiocarbimates derived from sulfonamides, see: Alves et al.(2009); Amim et al. (2008); Franca et al. (2006); Menezes et al. (2005). For the ligand synthesis, see: Hartke (1966).

Experimental top

The potassium methylsulfonyldithiocarbimate dihydrate was prepared from methanesulfonamide as described in the literature (Hartke,1966). The compound (1) was prepared in DMF (10 ml). Tin(IV) iodide (0.7 mmol) was added to a suspension of the potassium methylsulfonyldithiocarbimate dihydrate (2.1 mmol). The mixture was stirred for 1.5 h at room temperature and filtered. Water (15 ml) and tetraphenylphosphonium bromide (1.4 mmol) were added to the solution obtained. The mixture was stirred for 15 min and the solid product obtained was filtered, washed with distilled water and dried under reduced pressure for 1 day, yielding (Ph4P)2[Sn(CH3SO2N=CS2)3] (ca 70%). Suitable crystals of (1) were obtained by slow evaporation of the solution of the compound in methanol/water (1:1 v/v); m. pt 420.6–422.0 K. Analysis found: C49.69, H 3.91, N 3.04%; C54H49N3O6P2S9Sn requires: C 49.69, H 3.78, N 3.22%. IR (most important bands, cm-1): 1437 v(C=N); 1291 vass(SO2); 1127 vsim(SO2); 938 vass(CS2) and 317 v(SnS).

Refinement top

Refinement in Cc proved that the disorder around the two fold axis was not an artifact, thus confirming the correct space group as C2/c. Similarity restraints were applied to the disordered ligand in order to to ensure a reasonable geometry. H atoms were positioned geometrically and refined as riding. Caryl—H = 0.93 Å, Cmethyl—H= 0.96 Å. Uiso(H)= 1.2Ueq(Caryl) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: Please supply; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Structure of the complex showing atom labels, with ellipsoids drawn at the 30% probability level. One of the two moieties in the disordered ligand is presented in open bonds. For clarity, H atoms have been omitted. [Symmetry code: i= -x, y, 1/2-z].
[Figure 2] Fig. 2. Crystal packing of the title compound forming two independents sheets. The complex are displayed in green and the phosphonium in blue.
Bis(tetraphenylphosphonium) tris[N-(methylsulfonyl)dithiocarbimato(2-)- κ2S,S']stannate(IV) top
Crystal data top
(C24H20P)2[Sn(C2H3NO2S3)3]F(000) = 2664
Mr = 1305.13Dx = 1.472 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 37024 reflections
a = 18.5563 (3) Åθ = 2.9–26.4°
b = 13.6096 (2) ŵ = 0.86 mm1
c = 23.3203 (3) ÅT = 298 K
β = 91.355 (1)°Prism, colourless
V = 5887.75 (15) Å30.40 × 0.11 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4871 reflections with I > 2σ(I)
CCD rotation images, thick slices scansRint = 0.049
Absorption correction: gaussian
(Coppens et al., 1965)
θmax = 25.0°, θmin = 3.2°
Tmin = 0.726, Tmax = 0.943h = 2222
17695 measured reflectionsk = 1615
5178 independent reflectionsl = 2727
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.068 w = 1/[σ2(Fo2) + (0.0524P)2 + 7.2513P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.138(Δ/σ)max < 0.001
S = 1.25Δρmax = 0.62 e Å3
5178 reflectionsΔρmin = 0.80 e Å3
372 parameters
Crystal data top
(C24H20P)2[Sn(C2H3NO2S3)3]V = 5887.75 (15) Å3
Mr = 1305.13Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.5563 (3) ŵ = 0.86 mm1
b = 13.6096 (2) ÅT = 298 K
c = 23.3203 (3) Å0.40 × 0.11 × 0.07 mm
β = 91.355 (1)°
Data collection top
Nonius KappaCCD
diffractometer
5178 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
4871 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.943Rint = 0.049
17695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0681 restraint
wR(F2) = 0.138H-atom parameters constrained
S = 1.25Δρmax = 0.62 e Å3
5178 reflectionsΔρmin = 0.80 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1377 (2)0.3823 (4)0.23827 (19)0.0512 (11)
C20.3047 (4)0.2250 (6)0.2112 (3)0.097 (2)
H2A0.29870.18980.24640.146*
H2B0.33550.28070.2180.146*
H2C0.32610.18250.18350.146*
C30.0123 (6)0.7091 (10)0.2265 (5)0.054 (3)0.5
C40.0208 (8)0.9908 (8)0.2192 (6)0.084 (4)0.5
H4A01.04350.250.126*
H4B0.06920.99630.20880.126*0.5
H4C0.010.99680.18530.126*0.5
C50.1135 (3)0.1693 (4)0.42704 (19)0.0513 (11)
C60.1645 (3)0.0950 (4)0.4278 (2)0.0630 (13)
H60.18250.0710.46260.076*
C70.1888 (4)0.0563 (4)0.3767 (3)0.0807 (17)
H70.22270.0060.37730.097*
C80.1626 (4)0.0925 (5)0.3254 (3)0.0826 (19)
H80.17880.06610.29120.099*
C90.1128 (3)0.1669 (5)0.3238 (2)0.0737 (16)
H90.09570.19120.28880.088*
C100.0883 (3)0.2056 (4)0.3743 (2)0.0602 (13)
H100.05460.25630.37330.072*
C110.0120 (2)0.1986 (3)0.50305 (17)0.0482 (11)
C120.0622 (3)0.1985 (4)0.45823 (19)0.0546 (12)
H120.04720.2070.42080.065*
C130.1347 (3)0.1858 (4)0.4689 (2)0.0617 (13)
H130.16820.18520.43860.074*
C140.1570 (3)0.1742 (4)0.5237 (2)0.0656 (14)
H140.20570.16540.53070.079*
C150.1080 (3)0.1753 (4)0.5685 (2)0.0715 (15)
H150.12370.16770.60580.086*
C160.0362 (3)0.1877 (4)0.5588 (2)0.0654 (14)
H160.00340.18870.58960.079*
C170.1296 (2)0.1673 (4)0.55250 (18)0.0492 (11)
C180.1161 (3)0.0707 (4)0.5669 (2)0.0622 (13)
H180.08470.03350.54410.075*
C190.1486 (3)0.0285 (4)0.6148 (2)0.0689 (14)
H190.13920.03660.62430.083*
C200.1953 (3)0.0845 (5)0.6485 (2)0.0722 (16)
H200.21740.05680.68090.087*
C210.2091 (3)0.1798 (5)0.6346 (2)0.0731 (17)
H210.24050.21670.65770.088*
C220.1768 (3)0.2223 (4)0.5866 (2)0.0622 (13)
H220.18680.28730.57720.075*
C230.0993 (3)0.3510 (4)0.4934 (2)0.0541 (12)
C240.1468 (3)0.3929 (4)0.4560 (3)0.0711 (15)
H240.16730.3550.42750.085*
C250.1640 (4)0.4919 (4)0.4611 (3)0.092 (2)
H250.19570.52060.43560.11*
C260.1348 (4)0.5465 (5)0.5030 (4)0.102 (2)
H260.14710.61250.50670.122*
C270.0883 (5)0.5062 (5)0.5395 (4)0.114 (3)
H270.06880.54450.56830.137*
C280.0690 (4)0.4077 (5)0.5346 (3)0.093 (2)
H280.03560.38080.55920.111*
N10.1997 (2)0.3395 (3)0.23680 (16)0.0549 (10)
N30.0164 (4)0.8014 (7)0.2123 (3)0.059 (2)0.5
O10.1729 (2)0.1825 (3)0.18192 (17)0.0874 (13)
O20.2311 (2)0.3177 (3)0.13255 (15)0.0814 (12)
O30.0270 (8)0.8837 (7)0.1904 (4)0.134 (5)0.5
O40.0792 (5)0.8933 (8)0.2542 (6)0.132 (4)0.5
P10.08248 (6)0.22110 (9)0.49273 (5)0.0472 (3)
S10.12124 (7)0.45967 (11)0.29633 (6)0.0639 (4)
S20.06587 (7)0.37025 (12)0.18873 (5)0.0676 (4)
S30.22079 (7)0.26505 (11)0.18510 (5)0.0629 (4)
S50.01886 (19)0.6562 (3)0.21037 (15)0.0599 (8)0.5
S40.04165 (16)0.6248 (2)0.17458 (13)0.0629 (7)0.5
S600.88818 (17)0.250.0880 (7)
Sn100.49240 (4)0.250.0642 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (3)0.053 (3)0.047 (2)0.009 (2)0.010 (2)0.005 (2)
C20.091 (4)0.108 (5)0.092 (5)0.040 (4)0.011 (4)0.022 (4)
C30.041 (6)0.061 (9)0.060 (7)0.007 (6)0.001 (5)0.002 (6)
C40.109 (10)0.043 (7)0.099 (9)0.013 (6)0.004 (7)0.007 (6)
C50.059 (3)0.047 (3)0.047 (3)0.009 (2)0.002 (2)0.002 (2)
C60.075 (3)0.056 (3)0.059 (3)0.008 (3)0.009 (2)0.001 (2)
C70.103 (5)0.056 (4)0.085 (4)0.004 (3)0.028 (4)0.012 (3)
C80.115 (5)0.071 (4)0.062 (4)0.029 (4)0.026 (3)0.023 (3)
C90.095 (4)0.076 (4)0.050 (3)0.026 (4)0.002 (3)0.003 (3)
C100.071 (3)0.061 (3)0.048 (3)0.009 (3)0.002 (2)0.001 (2)
C110.056 (3)0.047 (3)0.041 (2)0.003 (2)0.003 (2)0.0003 (19)
C120.064 (3)0.057 (3)0.042 (2)0.001 (2)0.008 (2)0.000 (2)
C130.057 (3)0.063 (3)0.064 (3)0.001 (2)0.017 (2)0.001 (3)
C140.051 (3)0.066 (4)0.080 (4)0.004 (3)0.001 (3)0.007 (3)
C150.064 (3)0.090 (4)0.061 (3)0.003 (3)0.006 (3)0.012 (3)
C160.057 (3)0.089 (4)0.049 (3)0.005 (3)0.008 (2)0.006 (3)
C170.047 (2)0.059 (3)0.041 (2)0.000 (2)0.0049 (19)0.004 (2)
C180.070 (3)0.060 (4)0.055 (3)0.002 (3)0.015 (2)0.003 (2)
C190.075 (4)0.070 (4)0.061 (3)0.013 (3)0.009 (3)0.009 (3)
C200.058 (3)0.106 (5)0.051 (3)0.019 (3)0.010 (2)0.005 (3)
C210.055 (3)0.115 (6)0.049 (3)0.008 (3)0.011 (2)0.007 (3)
C220.058 (3)0.077 (4)0.051 (3)0.008 (3)0.003 (2)0.002 (3)
C230.060 (3)0.045 (3)0.057 (3)0.002 (2)0.002 (2)0.009 (2)
C240.075 (4)0.051 (3)0.087 (4)0.004 (3)0.014 (3)0.009 (3)
C250.096 (5)0.056 (4)0.125 (6)0.016 (3)0.028 (4)0.008 (4)
C260.108 (5)0.054 (4)0.143 (7)0.012 (4)0.016 (5)0.017 (4)
C270.154 (7)0.066 (5)0.126 (6)0.003 (5)0.041 (6)0.044 (4)
C280.119 (5)0.067 (4)0.094 (4)0.008 (4)0.042 (4)0.026 (4)
N10.052 (2)0.060 (3)0.052 (2)0.001 (2)0.0102 (17)0.0085 (19)
N30.066 (5)0.058 (6)0.054 (5)0.002 (4)0.007 (4)0.012 (4)
O10.110 (3)0.079 (3)0.074 (3)0.031 (2)0.014 (2)0.023 (2)
O20.080 (3)0.110 (3)0.055 (2)0.010 (2)0.0100 (18)0.006 (2)
O30.270 (15)0.073 (6)0.058 (5)0.038 (8)0.046 (7)0.013 (4)
O40.095 (7)0.110 (8)0.193 (12)0.006 (6)0.054 (7)0.038 (8)
P10.0522 (7)0.0475 (7)0.0416 (6)0.0017 (5)0.0034 (5)0.0020 (5)
S10.0551 (7)0.0641 (9)0.0713 (8)0.0058 (6)0.0250 (6)0.0177 (7)
S20.0568 (7)0.0928 (11)0.0523 (7)0.0070 (7)0.0166 (6)0.0055 (7)
S30.0668 (8)0.0698 (9)0.0521 (7)0.0048 (7)0.0010 (6)0.0083 (6)
S50.0665 (19)0.060 (2)0.053 (2)0.0027 (18)0.0020 (15)0.0058 (16)
S40.0832 (19)0.0563 (17)0.0500 (15)0.0006 (14)0.0157 (14)0.0023 (13)
S60.112 (2)0.0629 (14)0.0878 (16)00.0187 (13)0
Sn10.0555 (3)0.0525 (4)0.0834 (4)00.0268 (3)0
Geometric parameters (Å, º) top
C1—N11.290 (6)C17—P11.785 (4)
C1—S11.748 (5)C18—C191.381 (7)
C1—S21.751 (4)C18—H180.93
C2—S31.746 (6)C19—C201.385 (8)
C2—H2A0.96C19—H190.93
C2—H2B0.96C20—C211.363 (8)
C2—H2C0.96C20—H200.93
C3—S50.822 (12)C21—C221.385 (7)
C3—N31.302 (15)C21—H210.93
C3—S5i1.750 (12)C22—H220.93
C3—S41.763 (14)C23—C281.364 (7)
C4—S61.621 (11)C23—C241.378 (7)
C4—O4i1.813 (16)C23—P11.795 (5)
C4—O31.826 (16)C24—C251.389 (8)
C4—H4A1.0919C24—H240.93
C4—H4B0.9393C25—C261.352 (9)
C4—H4C0.9675C25—H250.93
C5—C61.383 (7)C26—C271.343 (10)
C5—C101.396 (7)C26—H260.93
C5—P11.794 (5)C27—C281.391 (9)
C6—C71.387 (7)C27—H270.93
C6—H60.93C28—H280.93
C7—C81.373 (9)N1—S31.630 (4)
C7—H70.93N3—S61.508 (8)
C8—C91.370 (9)N3—S51.977 (9)
C8—H80.93O1—S31.433 (4)
C9—C101.378 (7)O2—S31.436 (4)
C9—H90.93O3—S61.469 (8)
C10—H100.93O4—S61.477 (9)
C11—C121.383 (6)S1—Sn12.5125 (12)
C11—C161.394 (6)S2—Sn12.5262 (15)
C11—P11.802 (5)S5—C3i1.750 (12)
C12—C131.384 (7)S5—Sn12.441 (4)
C12—H120.93S4—Sn12.646 (3)
C13—C141.361 (7)S6—O3i1.469 (8)
C13—H130.93S6—O4i1.477 (9)
C14—C151.369 (7)S6—N3i1.508 (8)
C14—H140.93S6—C4i1.621 (11)
C15—C161.367 (7)Sn1—S5i2.441 (4)
C15—H150.93Sn1—S1i2.5125 (12)
C16—H160.93Sn1—S2i2.5262 (15)
C17—C181.382 (7)Sn1—S4i2.646 (3)
C17—C221.388 (7)
N1—C1—S1117.7 (3)C26—C25—C24120.0 (6)
N1—C1—S2127.2 (4)C26—C25—H25120
S1—C1—S2115.1 (3)C24—C25—H25120
S3—C2—H2A109.5C27—C26—C25120.5 (6)
S3—C2—H2B109.5C27—C26—H26119.7
H2A—C2—H2B109.5C25—C26—H26119.7
S3—C2—H2C109.5C26—C27—C28120.7 (6)
H2A—C2—H2C109.5C26—C27—H27119.7
H2B—C2—H2C109.5C28—C27—H27119.7
S5—C3—N3136.0 (15)C23—C28—C27119.5 (6)
S5—C3—S5i94.5 (11)C23—C28—H28120.2
N3—C3—S5i129.3 (10)C27—C28—H28120.2
N3—C3—S4115.7 (9)C1—N1—S3122.0 (3)
S5i—C3—S4115.0 (7)C3—N3—O3142.3 (10)
S6—C4—H4A100.5C3—N3—S6126.4 (9)
O4i—C4—H4A118.3O3—N3—S5140.2 (7)
O3—C4—H4A126.2S6—N3—S5143.2 (6)
S6—C4—H4B115N3—O3—O494.0 (7)
C4i—C4—H4B134.1N3—O3—C4102.9 (8)
O3—C4—H4B115.4C17—P1—C5110.1 (2)
H4A—C4—H4B118.2C17—P1—C23108.4 (2)
S6—C4—H4C107C5—P1—C23109.6 (2)
C4i—C4—H4C115.6C17—P1—C11106.7 (2)
O4i—C4—H4C132.7C5—P1—C11112.4 (2)
H4A—C4—H4C105.7C23—P1—C11109.6 (2)
H4B—C4—H4C109.4C1—S1—Sn186.82 (15)
C6—C5—C10119.0 (4)C1—S2—Sn186.33 (17)
C6—C5—P1120.7 (4)O1—S3—O2116.2 (2)
C10—C5—P1120.3 (4)O1—S3—N1111.5 (2)
C5—C6—C7120.2 (5)O2—S3—N1111.1 (2)
C5—C6—H6119.9O1—S3—C2108.7 (3)
C7—C6—H6119.9O2—S3—C2108.5 (3)
C8—C7—C6119.8 (6)N1—S3—C299.5 (3)
C8—C7—H7120.1C3—S5—S4142.7 (11)
C6—C7—H7120.1S4—S5—C3i175.2 (4)
C9—C8—C7120.8 (5)S4—S5—N3116.1 (3)
C9—C8—H8119.6C3i—S5—N364.0 (4)
C7—C8—H8119.6C3—S5—Sn1127.1 (10)
C8—C9—C10119.8 (5)S4—S5—Sn189.6 (3)
C8—C9—H9120.1C3i—S5—Sn190.2 (5)
C10—C9—H9120.1N3—S5—Sn1154.2 (3)
C9—C10—C5120.4 (5)S5—S4—Sn167.3 (3)
C9—C10—H10119.8C3—S4—Sn183.5 (4)
C5—C10—H10119.8O3i—S6—O3175.2 (8)
C12—C11—C16118.7 (4)O3i—S6—O4104.9 (7)
C12—C11—P1122.6 (3)O3—S6—O475.4 (7)
C16—C11—P1118.6 (3)O4i—S6—O4174.6 (9)
C11—C12—C13120.2 (4)O3—S6—N3i116.8 (5)
C11—C12—H12119.9O4i—S6—N3i106.9 (5)
C13—C12—H12119.9O4—S6—N3i77.4 (6)
C14—C13—C12120.1 (5)O3i—S6—N3116.8 (5)
C14—C13—H13119.9O3—S6—N359.0 (5)
C12—C13—H13119.9O4i—S6—N377.4 (6)
C13—C14—C15120.3 (5)O4—S6—N3106.9 (5)
C13—C14—H14119.9N3i—S6—N376.9 (7)
C15—C14—H14119.9O3i—S6—C4i72.3 (6)
C16—C15—C14120.5 (5)O3—S6—C4i112.1 (7)
C16—C15—H15119.7O4i—S6—C4i103.7 (7)
C14—C15—H15119.7O4—S6—C4i71.5 (6)
C15—C16—C11120.2 (5)N3i—S6—C4i111.3 (6)
C15—C16—H16119.9N3—S6—C4i170.6 (6)
C11—C16—H16119.9O3i—S6—C4112.1 (7)
C18—C17—C22119.3 (4)O3—S6—C472.3 (6)
C18—C17—P1119.5 (3)O4i—S6—C471.5 (6)
C22—C17—P1121.1 (4)O4—S6—C4103.7 (7)
C19—C18—C17120.9 (5)N3—S6—C4111.3 (6)
C19—C18—H18119.5S5i—Sn1—S548.15 (19)
C17—C18—H18119.5S5i—Sn1—S197.70 (9)
C18—C19—C20119.0 (6)S5—Sn1—S1100.94 (9)
C18—C19—H19120.5S5—Sn1—S1i97.70 (9)
C20—C19—H19120.5S5i—Sn1—S2i108.13 (10)
C21—C20—C19120.5 (5)S5—Sn1—S2i152.94 (10)
C21—C20—H20119.7S1—Sn1—S2i94.61 (5)
C19—C20—H20119.7S1i—Sn1—S2i71.71 (4)
C20—C21—C22120.7 (5)S5i—Sn1—S2152.94 (10)
C20—C21—H21119.7S5—Sn1—S2108.13 (10)
C22—C21—H21119.7S1—Sn1—S271.71 (4)
C21—C22—C17119.5 (5)S1i—Sn1—S294.61 (5)
C21—C22—H22120.2S5—Sn1—S4i71.14 (14)
C17—C22—H22120.2S1—Sn1—S4i96.17 (7)
C28—C23—C24119.5 (5)S2i—Sn1—S4i85.36 (8)
C28—C23—P1119.3 (4)S2—Sn1—S4i167.66 (7)
C24—C23—P1121.0 (4)S1—Sn1—S497.69 (8)
C23—C24—C25119.8 (5)S1i—Sn1—S496.17 (7)
C23—C24—H24120.1S2i—Sn1—S4167.66 (7)
C25—C24—H24120.1S2—Sn1—S485.36 (8)
C10—C5—C6—C71.3 (8)C3i—C3—N3—S65.2 (18)
P1—C5—C6—C7179.2 (4)S5i—C3—N3—S65.2 (15)
C5—C6—C7—C80.6 (9)S4—C3—N3—S6175.4 (6)
C6—C7—C8—C90.3 (9)S4—C3—N3—N3i177.0 (8)
C7—C8—C9—C100.5 (9)C3i—C3—N3—S5173 (3)
C8—C9—C10—C50.2 (8)S5i—C3—N3—S5173 (3)
C6—C5—C10—C91.1 (7)S4—C3—N3—S56.0 (12)
P1—C5—C10—C9179.1 (4)C18—C17—P1—C570.6 (4)
C16—C11—C12—C131.2 (7)C22—C17—P1—C5112.8 (4)
P1—C11—C12—C13176.7 (4)C18—C17—P1—C23169.5 (4)
C11—C12—C13—C140.5 (8)C22—C17—P1—C237.1 (4)
C12—C13—C14—C150.2 (8)C18—C17—P1—C1151.6 (4)
C13—C14—C15—C160.3 (9)C22—C17—P1—C11125.0 (4)
C14—C15—C16—C110.4 (9)C6—C5—P1—C172.9 (5)
C12—C11—C16—C151.1 (8)C10—C5—P1—C17175.1 (4)
P1—C11—C16—C15176.8 (4)C6—C5—P1—C23122.0 (4)
C22—C17—C18—C190.3 (7)C10—C5—P1—C2355.9 (4)
P1—C17—C18—C19176.3 (4)C6—C5—P1—C11115.9 (4)
C17—C18—C19—C200.0 (8)C10—C5—P1—C1166.2 (4)
C18—C19—C20—C210.1 (8)C28—C23—P1—C1771.1 (5)
C19—C20—C21—C220.2 (8)C24—C23—P1—C17103.7 (5)
C20—C21—C22—C170.5 (8)C28—C23—P1—C5168.7 (5)
C18—C17—C22—C210.5 (7)C24—C23—P1—C516.5 (5)
P1—C17—C22—C21176.1 (4)C28—C23—P1—C1145.0 (5)
C28—C23—C24—C250.9 (9)C24—C23—P1—C11140.3 (4)
P1—C23—C24—C25173.9 (5)C12—C11—P1—C17157.2 (4)
C23—C24—C25—C260.7 (11)C16—C11—P1—C1727.3 (5)
C24—C25—C26—C271.0 (13)C12—C11—P1—C536.4 (5)
C25—C26—C27—C280.3 (14)C16—C11—P1—C5148.1 (4)
C24—C23—C28—C272.2 (10)C12—C11—P1—C2385.7 (5)
P1—C23—C28—C27172.7 (6)C16—C11—P1—C2389.8 (4)
C26—C27—C28—C232.0 (13)N1—C1—S1—Sn1178.7 (4)
S1—C1—N1—S3179.5 (2)S2—C1—S1—Sn12.4 (2)
S2—C1—N1—S30.7 (6)N1—C1—S2—Sn1178.8 (4)
S5—C3—N3—O394 (2)S1—C1—S2—Sn12.4 (2)
C3i—C3—N3—O380 (2)C1—N1—S3—O160.3 (5)
S4—C3—N3—O399.6 (15)C1—N1—S3—O271.0 (5)
S5—C3—N3—S6178.6 (15)C1—N1—S3—C2174.8 (5)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O4ii0.962.353.284 (13)166
C16—H16···O3iii0.932.603.2203 (10)125
C19—H19···O1iv0.932.473.296 (7)148
C28—H28···S4iii0.932.693.345 (5)128
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x, y+1, z+1/2; (iv) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula(C24H20P)2[Sn(C2H3NO2S3)3]
Mr1305.13
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)18.5563 (3), 13.6096 (2), 23.3203 (3)
β (°) 91.355 (1)
V3)5887.75 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.40 × 0.11 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965)
Tmin, Tmax0.726, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
17695, 5178, 4871
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.138, 1.25
No. of reflections5178
No. of parameters372
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.80

Computer programs: COLLECT (Nonius, 2000), Please supply, DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O4i0.962.353.284 (13)166
C16—H16···O3ii0.932.603.2203 (10)125
C19—H19···O1iii0.932.473.296 (7)148
C28—H28···S4ii0.932.693.345 (5)128
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1, z+1/2; (iii) x, y, z+1/2.
 

Acknowledgements

The authors are grateful to FAPEMIG and CNPq for financial support.

References

First citationAlves, L. C., Rubinger, M. M. M., Lindemann, R. H., Perpétuo, G. J., Janczak, J., Miranda, L. D. L., Zambolim, L. & Oliveira, M. R. L. (2009). J. Inorg. Biochem. 103, 1045–1053.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAmim, R. S., Oliveira, M. R. L., Perpétuo, G. J., Janczak, J., Miranda, L. D. L. & Rubinger, M. M. M. (2008). Polyhedron, 27, 1891–1897.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarone, G., Chaplin, T., Hibbert, T. G., Kana, A. T., Mahon, M. F., Molloy, K. C., Worsley Ian, D., Parkin, I. P. & Price, L. S. (2002). J. Chem. Soc. Dalton Trans. pp. 1085–1092.  Web of Science CSD CrossRef Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCoucouvanis, D. (1979). Prog. Inorg. Chem. 22, 301–469.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFranca, E. F., Oliveira, M. R. L., Guilardi, S., Andrade, R. P., Lindemann, R. H., Amim, A. Jr, Ellena, J., De Bellis, V. M. & Rubinger, M. M. M. (2006). Polyhedron, 25, 2119–2126.  CAS Google Scholar
First citationHartke, K. (1966). Arch. Pharm. 299, 174–178.  CrossRef CAS Google Scholar
First citationHeard, P. J. (2005). Prog. Inorg. Chem. 53, 1–69.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMenezes, D. C., Vieira, F. T., de Lima, G. M., Porto, A. O., Cortés, M. E., Ardisson, J. D. & Albrecht-Schmitt, T. E. (2005). Eur. J. Med. Chem. 40, 1277–1282.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSeth, N., Gupta, V. D., Nöth, H. & Thomann, M. (1992). Chem. Ber. 125, 1523–1528.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1154-m1155
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds