organic compounds
1,10-Phenanthrolin-1-ium 2-carboxy-4,5-dichlorobenzoate
aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bBIO-21 Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3052, Australia
*Correspondence e-mail: g.smith@qut.edu.au
In the structure of the 1:1 proton-transfer compound of 1,10-phenanthroline with 4,5-dichlorophthalic acid, C12H9N2+·C8H3Cl2O4−, determined at 130 K, the 1,10-phenanthrolinium cation and the hydrogen 4,5-dichlorophthalate anion associate through a single N—H⋯Ocarboxyl hydrogen bond giving discrete units which have no extension except through a number of weak cation C—H⋯Oanion associations and weak cation–anion aromatic ring π–π interactions [minimum centroid–centroid separation = 3.6815 (12) Å]. The anions are essentially planar "[maximum deviation 0.214 (1) Å (a carboxyl O)] with the syn-related H atom of the carboxyl group, forming a short intramolecular O—H⋯Ocarboxyl hydrogen bond.
Related literature
For the structures of other hydrogen 4,5-dichlorophthalate salts, see: Mallinson et al. (2003); Bozkurt et al. (2006); Smith et al. (2007, 2008a,b, 2009a,b). For hydrogen-bond motifs, see: Etter et al. (1990).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536809034448/fl2261sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809034448/fl2261Isup2.hkl
The title compound (I) was synthesized by heating 1 mmol quantities of 1,10-phenanthroline and 4,5-dichlorophthalic acid in 50 ml of 95% ethanol for 10 min under reflux. After concentration to ca. 30 ml, partial room-temperature evaporation of the hot-filtered solution gave colourless plates (m.p. 464–465 K) suitable for data collection.
Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the
at calculated positions [C–H, 0.93 Å] and treated as riding models with Uiso(H) = 1.2Ueq (C).Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. Molecular configuration and atom numbering scheme for the 1,10-phenanthrolin-1-ium cation and the hydrogen 4,5-dichlorophthalate anion in (I). Non-H atoms are shown as 50% probability displacement ellipsoids. The inter-species hydrogen bond is shown as a dashed line. | |
Fig. 2. Cation–anion aromatic ring overlap in (I) viewed down the approximate b direction in the unit cell. For symmetry code (iv): x + 1, y - 1, z. | |
Fig. 3. Aromatic ring π–π interactions in a perspective view of part of the unit cell. Non-interactive H atoms are omitted. For symmetry code (v): x - 1, y, z. |
C12H9N2+·C8H3Cl2O4− | F(000) = 424 |
Mr = 415.22 | Dx = 1.589 Mg m−3 |
Monoclinic, P21 | Melting point = 464–465 K |
Hall symbol: P 2yb | Mo Kα radiation, λ = 0.71073 Å |
a = 6.4598 (11) Å | Cell parameters from 3630 reflections |
b = 7.3696 (12) Å | θ = 2.2–27.5° |
c = 18.302 (3) Å | µ = 0.41 mm−1 |
β = 94.978 (3)° | T = 130 K |
V = 868.0 (2) Å3 | Plate, colourless |
Z = 2 | 0.55 × 0.45 × 0.05 mm |
Bruker SMART CCD area-detector diffractometer | 3734 independent reflections |
Radiation source: sealed tube | 3629 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ϕ and ω scans | θmax = 27.6°, θmin = 1.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −5→8 |
Tmin = 0.81, Tmax = 0.98 | k = −9→9 |
5464 measured reflections | l = −23→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.053P)2 + 0.0522P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3734 reflections | Δρmax = 0.30 e Å−3 |
261 parameters | Δρmin = −0.19 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1564 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.00 (4) |
C12H9N2+·C8H3Cl2O4− | V = 868.0 (2) Å3 |
Mr = 415.22 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 6.4598 (11) Å | µ = 0.41 mm−1 |
b = 7.3696 (12) Å | T = 130 K |
c = 18.302 (3) Å | 0.55 × 0.45 × 0.05 mm |
β = 94.978 (3)° |
Bruker SMART CCD area-detector diffractometer | 3734 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3629 reflections with I > 2σ(I) |
Tmin = 0.81, Tmax = 0.98 | Rint = 0.017 |
5464 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.085 | Δρmax = 0.30 e Å−3 |
S = 1.04 | Δρmin = −0.19 e Å−3 |
3734 reflections | Absolute structure: Flack (1983), 1564 Friedel pairs |
261 parameters | Absolute structure parameter: 0.00 (4) |
1 restraint |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1A | 0.4667 (2) | 0.7304 (2) | 0.14863 (8) | 0.0192 (4) | |
N10A | 0.4177 (2) | 0.7715 (2) | 0.29542 (8) | 0.0212 (4) | |
C2A | 0.5046 (3) | 0.7149 (3) | 0.07881 (10) | 0.0232 (5) | |
C3A | 0.3645 (3) | 0.7828 (3) | 0.02322 (10) | 0.0277 (5) | |
C4A | 0.1845 (3) | 0.8641 (3) | 0.04213 (10) | 0.0268 (5) | |
C5A | −0.0459 (3) | 0.9562 (3) | 0.13825 (11) | 0.0233 (5) | |
C6A | −0.0804 (3) | 0.9634 (2) | 0.20961 (11) | 0.0246 (5) | |
C7A | 0.0442 (3) | 0.9113 (2) | 0.34093 (10) | 0.0259 (6) | |
C8A | 0.2013 (3) | 0.8540 (3) | 0.39058 (10) | 0.0286 (5) | |
C9A | 0.3857 (3) | 0.7854 (3) | 0.36523 (10) | 0.0253 (5) | |
C11A | 0.2617 (3) | 0.8274 (2) | 0.24641 (9) | 0.0184 (4) | |
C12A | 0.2916 (3) | 0.8115 (2) | 0.16952 (10) | 0.0178 (4) | |
C13A | 0.1421 (3) | 0.8783 (2) | 0.11565 (10) | 0.0207 (4) | |
C14A | 0.0717 (3) | 0.9002 (2) | 0.26564 (10) | 0.0207 (5) | |
Cl4 | 1.15820 (7) | 0.37080 (8) | 0.46649 (2) | 0.0332 (1) | |
Cl5 | 1.59276 (7) | 0.22144 (8) | 0.42219 (2) | 0.0316 (1) | |
O11 | 1.5052 (2) | 0.18688 (18) | 0.14604 (7) | 0.0251 (4) | |
O12 | 1.2404 (2) | 0.34157 (19) | 0.09355 (7) | 0.0265 (4) | |
O21 | 0.9277 (2) | 0.4836 (2) | 0.12771 (7) | 0.0271 (4) | |
O22 | 0.76248 (19) | 0.53666 (18) | 0.22655 (7) | 0.0254 (4) | |
C1 | 1.2820 (3) | 0.3211 (2) | 0.22748 (9) | 0.0179 (5) | |
C2 | 1.0928 (3) | 0.3971 (2) | 0.24707 (9) | 0.0178 (4) | |
C3 | 1.0603 (3) | 0.4092 (2) | 0.32117 (10) | 0.0206 (5) | |
C4 | 1.2096 (3) | 0.3536 (3) | 0.37559 (9) | 0.0215 (5) | |
C5 | 1.3983 (3) | 0.2862 (2) | 0.35636 (10) | 0.0207 (5) | |
C6 | 1.4314 (3) | 0.2693 (2) | 0.28333 (10) | 0.0196 (4) | |
C11 | 1.3502 (3) | 0.2788 (2) | 0.15083 (9) | 0.0195 (5) | |
C21 | 0.9127 (3) | 0.4764 (2) | 0.19673 (9) | 0.0193 (4) | |
H1A | 0.556 (3) | 0.683 (3) | 0.1842 (12) | 0.021 (5)* | |
H2A | 0.62580 | 0.65840 | 0.06680 | 0.0280* | |
H3A | 0.39190 | 0.77330 | −0.02570 | 0.0330* | |
H4A | 0.09010 | 0.91030 | 0.00560 | 0.0320* | |
H5A | −0.14490 | 1.00210 | 0.10310 | 0.0280* | |
H6A | −0.20540 | 1.01040 | 0.22290 | 0.0300* | |
H7A | −0.07860 | 0.95670 | 0.35670 | 0.0310* | |
H8A | 0.18650 | 0.86030 | 0.44060 | 0.0340* | |
H9A | 0.49080 | 0.74780 | 0.39980 | 0.0300* | |
H3 | 0.93520 | 0.45580 | 0.33450 | 0.0250* | |
H6 | 1.55700 | 0.22200 | 0.27080 | 0.0230* | |
H12 | 1.113 (5) | 0.400 (4) | 0.1072 (17) | 0.035 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1A | 0.0167 (6) | 0.0212 (7) | 0.0195 (7) | −0.0015 (6) | 0.0013 (5) | 0.0001 (6) |
N10A | 0.0217 (7) | 0.0224 (7) | 0.0193 (7) | 0.0012 (6) | 0.0005 (6) | −0.0004 (6) |
C2A | 0.0222 (8) | 0.0261 (8) | 0.0222 (8) | −0.0047 (8) | 0.0078 (7) | −0.0028 (7) |
C3A | 0.0292 (10) | 0.0360 (10) | 0.0182 (8) | −0.0077 (8) | 0.0036 (7) | 0.0005 (7) |
C4A | 0.0268 (9) | 0.0298 (9) | 0.0230 (8) | −0.0069 (8) | −0.0029 (7) | 0.0060 (8) |
C5A | 0.0176 (8) | 0.0211 (8) | 0.0302 (9) | −0.0004 (7) | −0.0040 (7) | 0.0041 (7) |
C6A | 0.0164 (8) | 0.0202 (9) | 0.0375 (10) | 0.0014 (7) | 0.0033 (7) | −0.0017 (8) |
C7A | 0.0242 (9) | 0.0253 (10) | 0.0295 (10) | 0.0011 (8) | 0.0104 (7) | −0.0027 (7) |
C8A | 0.0358 (10) | 0.0308 (10) | 0.0203 (8) | 0.0001 (9) | 0.0096 (7) | −0.0023 (8) |
C9A | 0.0295 (9) | 0.0263 (9) | 0.0197 (8) | 0.0025 (8) | −0.0007 (7) | 0.0020 (7) |
C11A | 0.0182 (8) | 0.0164 (7) | 0.0207 (8) | −0.0009 (6) | 0.0026 (6) | 0.0009 (6) |
C12A | 0.0163 (7) | 0.0166 (7) | 0.0204 (8) | −0.0040 (6) | 0.0005 (6) | 0.0001 (6) |
C13A | 0.0186 (7) | 0.0188 (7) | 0.0241 (8) | −0.0039 (7) | −0.0020 (6) | 0.0027 (7) |
C14A | 0.0195 (8) | 0.0181 (8) | 0.0248 (8) | −0.0031 (7) | 0.0039 (6) | −0.0021 (7) |
Cl4 | 0.0291 (2) | 0.0541 (3) | 0.0169 (2) | 0.0014 (2) | 0.0045 (2) | −0.0034 (2) |
Cl5 | 0.0251 (2) | 0.0463 (3) | 0.0221 (2) | 0.0067 (2) | −0.0046 (2) | −0.0001 (2) |
O11 | 0.0227 (6) | 0.0297 (7) | 0.0236 (6) | 0.0044 (6) | 0.0058 (5) | −0.0029 (5) |
O12 | 0.0260 (6) | 0.0354 (7) | 0.0187 (6) | 0.0056 (6) | 0.0052 (5) | 0.0018 (5) |
O21 | 0.0264 (7) | 0.0343 (7) | 0.0204 (6) | 0.0068 (6) | 0.0009 (5) | 0.0030 (5) |
O22 | 0.0200 (6) | 0.0284 (7) | 0.0277 (7) | 0.0044 (5) | 0.0023 (5) | 0.0012 (5) |
C1 | 0.0189 (8) | 0.0157 (8) | 0.0192 (8) | −0.0027 (6) | 0.0029 (6) | 0.0006 (6) |
C2 | 0.0188 (8) | 0.0149 (7) | 0.0197 (8) | −0.0012 (6) | 0.0024 (6) | 0.0007 (6) |
C3 | 0.0189 (8) | 0.0215 (9) | 0.0215 (8) | −0.0012 (7) | 0.0032 (7) | −0.0034 (6) |
C4 | 0.0229 (8) | 0.0263 (9) | 0.0161 (7) | −0.0035 (7) | 0.0057 (6) | −0.0019 (7) |
C5 | 0.0188 (8) | 0.0231 (8) | 0.0196 (8) | −0.0005 (7) | −0.0019 (6) | 0.0019 (7) |
C6 | 0.0155 (7) | 0.0207 (8) | 0.0229 (8) | 0.0010 (6) | 0.0040 (6) | −0.0014 (7) |
C11 | 0.0202 (8) | 0.0197 (8) | 0.0192 (8) | −0.0041 (7) | 0.0055 (6) | −0.0012 (6) |
C21 | 0.0168 (7) | 0.0173 (8) | 0.0233 (8) | −0.0023 (6) | −0.0005 (6) | −0.0004 (6) |
Cl4—C4 | 1.7291 (17) | C11A—C12A | 1.442 (2) |
Cl5—C5 | 1.7305 (19) | C11A—C14A | 1.412 (3) |
O11—C11 | 1.218 (2) | C12A—C13A | 1.408 (3) |
O12—C11 | 1.299 (2) | C2A—H2A | 0.9300 |
O21—C21 | 1.276 (2) | C3A—H3A | 0.9300 |
O22—C21 | 1.236 (2) | C4A—H4A | 0.9300 |
O12—H12 | 0.98 (3) | C5A—H5A | 0.9300 |
N1A—C12A | 1.363 (2) | C6A—H6A | 0.9300 |
N1A—C2A | 1.327 (2) | C7A—H7A | 0.9300 |
N10A—C11A | 1.354 (2) | C8A—H8A | 0.9300 |
N10A—C9A | 1.316 (2) | C9A—H9A | 0.9300 |
N1A—H1A | 0.90 (2) | C1—C2 | 1.419 (3) |
C2A—C3A | 1.395 (3) | C1—C11 | 1.538 (2) |
C3A—C4A | 1.379 (3) | C1—C6 | 1.397 (3) |
C4A—C13A | 1.400 (3) | C2—C21 | 1.536 (3) |
C5A—C6A | 1.345 (3) | C2—C3 | 1.393 (2) |
C5A—C13A | 1.436 (3) | C3—C4 | 1.387 (3) |
C6A—C14A | 1.435 (3) | C4—C5 | 1.390 (3) |
C7A—C14A | 1.407 (3) | C5—C6 | 1.377 (3) |
C7A—C8A | 1.369 (3) | C3—H3 | 0.9300 |
C8A—C9A | 1.409 (3) | C6—H6 | 0.9300 |
C11—O12—H12 | 111 (2) | C14A—C6A—H6A | 119.00 |
C2A—N1A—C12A | 122.34 (16) | C5A—C6A—H6A | 119.00 |
C9A—N10A—C11A | 116.68 (15) | C8A—C7A—H7A | 121.00 |
C12A—N1A—H1A | 117.5 (13) | C14A—C7A—H7A | 121.00 |
C2A—N1A—H1A | 120.1 (13) | C9A—C8A—H8A | 120.00 |
N1A—C2A—C3A | 120.63 (18) | C7A—C8A—H8A | 120.00 |
C2A—C3A—C4A | 118.74 (17) | C8A—C9A—H9A | 118.00 |
C3A—C4A—C13A | 120.89 (17) | N10A—C9A—H9A | 118.00 |
C6A—C5A—C13A | 120.73 (18) | C2—C1—C11 | 129.18 (16) |
C5A—C6A—C14A | 121.35 (18) | C2—C1—C6 | 118.60 (15) |
C8A—C7A—C14A | 118.87 (17) | C6—C1—C11 | 112.19 (16) |
C7A—C8A—C9A | 119.43 (17) | C1—C2—C21 | 128.55 (15) |
N10A—C9A—C8A | 123.79 (17) | C1—C2—C3 | 118.51 (16) |
N10A—C11A—C14A | 124.31 (15) | C3—C2—C21 | 112.92 (16) |
C12A—C11A—C14A | 117.85 (16) | C2—C3—C4 | 121.74 (17) |
N10A—C11A—C12A | 117.83 (16) | Cl4—C4—C5 | 121.05 (14) |
C11A—C12A—C13A | 120.89 (17) | C3—C4—C5 | 119.63 (16) |
N1A—C12A—C11A | 119.61 (16) | Cl4—C4—C3 | 119.32 (15) |
N1A—C12A—C13A | 119.50 (16) | C4—C5—C6 | 119.44 (17) |
C5A—C13A—C12A | 118.94 (17) | Cl5—C5—C4 | 121.47 (14) |
C4A—C13A—C5A | 123.19 (17) | Cl5—C5—C6 | 119.09 (15) |
C4A—C13A—C12A | 117.87 (17) | C1—C6—C5 | 122.00 (17) |
C6A—C14A—C7A | 122.97 (17) | O11—C11—C1 | 118.72 (15) |
C7A—C14A—C11A | 116.91 (16) | O12—C11—C1 | 118.97 (15) |
C6A—C14A—C11A | 120.09 (16) | O11—C11—O12 | 122.32 (16) |
C3A—C2A—H2A | 120.00 | O22—C21—C2 | 117.04 (15) |
N1A—C2A—H2A | 120.00 | O21—C21—O22 | 123.49 (17) |
C2A—C3A—H3A | 121.00 | O21—C21—C2 | 119.41 (16) |
C4A—C3A—H3A | 121.00 | C2—C3—H3 | 119.00 |
C3A—C4A—H4A | 120.00 | C4—C3—H3 | 119.00 |
C13A—C4A—H4A | 120.00 | C1—C6—H6 | 119.00 |
C6A—C5A—H5A | 120.00 | C5—C6—H6 | 119.00 |
C13A—C5A—H5A | 120.00 | ||
C12A—N1A—C2A—C3A | 0.2 (3) | N1A—C12A—C13A—C5A | 177.27 (16) |
C2A—N1A—C12A—C11A | −178.71 (17) | C11A—C12A—C13A—C4A | 177.79 (16) |
C2A—N1A—C12A—C13A | 1.4 (3) | C11A—C12A—C13A—C5A | −2.6 (2) |
C11A—N10A—C9A—C8A | 0.0 (3) | C6—C1—C2—C3 | −2.9 (2) |
C9A—N10A—C11A—C12A | −179.22 (16) | C6—C1—C2—C21 | 175.21 (15) |
C9A—N10A—C11A—C14A | 0.8 (2) | C11—C1—C2—C3 | 174.90 (15) |
N1A—C2A—C3A—C4A | −0.9 (3) | C11—C1—C2—C21 | −7.0 (3) |
C2A—C3A—C4A—C13A | −0.1 (3) | C2—C1—C6—C5 | 1.5 (2) |
C3A—C4A—C13A—C5A | −177.89 (19) | C11—C1—C6—C5 | −176.68 (14) |
C3A—C4A—C13A—C12A | 1.7 (3) | C2—C1—C11—O11 | −168.30 (16) |
C13A—C5A—C6A—C14A | 2.4 (3) | C2—C1—C11—O12 | 11.4 (3) |
C6A—C5A—C13A—C4A | 178.76 (18) | C6—C1—C11—O11 | 9.6 (2) |
C6A—C5A—C13A—C12A | −0.8 (3) | C6—C1—C11—O12 | −170.67 (15) |
C5A—C6A—C14A—C7A | 177.74 (17) | C1—C2—C3—C4 | 1.7 (2) |
C5A—C6A—C14A—C11A | −0.5 (2) | C21—C2—C3—C4 | −176.64 (16) |
C14A—C7A—C8A—C9A | −0.1 (3) | C1—C2—C21—O21 | −2.2 (3) |
C8A—C7A—C14A—C6A | −177.47 (17) | C1—C2—C21—O22 | −179.53 (16) |
C8A—C7A—C14A—C11A | 0.8 (2) | C3—C2—C21—O21 | 175.96 (15) |
C7A—C8A—C9A—N10A | −0.3 (3) | C3—C2—C21—O22 | −1.4 (2) |
N10A—C11A—C12A—N1A | 4.5 (2) | C2—C3—C4—Cl4 | −179.50 (14) |
N10A—C11A—C12A—C13A | −175.62 (15) | C2—C3—C4—C5 | 0.9 (3) |
C14A—C11A—C12A—N1A | −175.47 (15) | Cl4—C4—C5—Cl5 | −1.6 (2) |
C14A—C11A—C12A—C13A | 4.4 (2) | Cl4—C4—C5—C6 | 178.04 (14) |
N10A—C11A—C14A—C6A | 177.13 (15) | C3—C4—C5—Cl5 | 178.02 (14) |
N10A—C11A—C14A—C7A | −1.2 (2) | C3—C4—C5—C6 | −2.4 (3) |
C12A—C11A—C14A—C6A | −2.9 (2) | Cl5—C5—C6—C1 | −179.20 (12) |
C12A—C11A—C14A—C7A | 178.83 (14) | C4—C5—C6—C1 | 1.2 (2) |
N1A—C12A—C13A—C4A | −2.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O22 | 0.90 (2) | 1.83 (2) | 2.6926 (19) | 158 (2) |
N1A—H1A···N10A | 0.90 (2) | 2.38 (2) | 2.749 (2) | 104.3 (15) |
O12—H12···O21 | 0.98 (3) | 1.43 (3) | 2.4054 (19) | 179 (4) |
C2A—H2A···O21 | 0.93 | 2.52 | 3.279 (2) | 140 |
C3—H3···O22 | 0.93 | 2.26 | 2.647 (2) | 104 |
C3A—H3A···O11i | 0.93 | 2.44 | 3.355 (2) | 168 |
C4A—H4A···O21ii | 0.93 | 2.49 | 3.252 (2) | 139 |
C6—H6···O11 | 0.93 | 2.29 | 2.668 (2) | 103 |
C6A—H6A···O11iii | 0.93 | 2.59 | 3.270 (2) | 130 |
Symmetry codes: (i) −x+2, y+1/2, −z; (ii) −x+1, y+1/2, −z; (iii) x−2, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C12H9N2+·C8H3Cl2O4− |
Mr | 415.22 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 130 |
a, b, c (Å) | 6.4598 (11), 7.3696 (12), 18.302 (3) |
β (°) | 94.978 (3) |
V (Å3) | 868.0 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.41 |
Crystal size (mm) | 0.55 × 0.45 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.81, 0.98 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5464, 3734, 3629 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.652 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.085, 1.04 |
No. of reflections | 3734 |
No. of parameters | 261 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.19 |
Absolute structure | Flack (1983), 1564 Friedel pairs |
Absolute structure parameter | 0.00 (4) |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O22 | 0.90 (2) | 1.83 (2) | 2.6926 (19) | 158 (2) |
N1A—H1A···N10A | 0.90 (2) | 2.38 (2) | 2.749 (2) | 104.3 (15) |
O12—H12···O21 | 0.98 (3) | 1.43 (3) | 2.4054 (19) | 179 (4) |
C2A—H2A···O21 | 0.93 | 2.52 | 3.279 (2) | 140 |
C3—H3···O22 | 0.93 | 2.26 | 2.647 (2) | 104 |
C3A—H3A···O11i | 0.93 | 2.44 | 3.355 (2) | 168 |
C4A—H4A···O21ii | 0.93 | 2.49 | 3.252 (2) | 139 |
C6—H6···O11 | 0.93 | 2.29 | 2.668 (2) | 103 |
C6A—H6A···O11iii | 0.93 | 2.59 | 3.270 (2) | 130 |
Symmetry codes: (i) −x+2, y+1/2, −z; (ii) −x+1, y+1/2, −z; (iii) x−2, y+1, z. |
Acknowledgements
The authors acknowledge financial support from the School of Physical and Chemical Sciences, Queensland University of Technology, and the School of Chemistry, University of Melbourne.
References
Bozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258–o4260. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Mallinson, P. R., Smith, G. T., Wilson, C. C., Grech, E. & Wozniak, K. (2003). J. Am. Chem. Soc. 125, 4259–4270. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o4276–o4277. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2008a). Acta Cryst. C64, o180–o183. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2008b). Acta Cryst. C64, o532–o536. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2009a). Acta Cryst. C65, o103–o107. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2009b). Acta Cryst. E65, o2111. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the aromatic nitrogen Lewis bases commonly have low-dimensional hydrogen-bonded structures (Smith et al., 2007, 2008a, 2008b, 2009a, 2009b; Bozkurt et al., 2006; Mallinson et al., 2003). In the two-dimensional examples the DCPA anions assume non-planar conformations and form into sheet substructures which in the case of the compounds with the meta- and para-aminobenzoic acids (Smith et al., 2008b) are extended into three-dimensional frameworks through peripheral cyclic head-to-head carboxylic acid hydrogen-bonding associations. However, with the majority of the structures, e.g. the brucinium salt (Smith et al., 2007), the DCPA anions are essentially planar with short intramolecular carboxylic acid O–H···Ocarboxyl hydrogen bonds. These features were therefore expected and found in the 1:1 proton-transfer compound of DCPA with 1,10-phenanthroline, (I), reported here.
In (I), a single N+–H···Ocarboxyl hydrogen bond links the phenanthroline cation and the DCPA anion (Fig. 1). A weak aromatic ring C–H···Ocarboxyl interaction (Table 1) completes an asymmetric R22(7) cyclic association (Etter et al., 1990). Three additional anion C–H···O interactions represent the only structure extensions present. Some overlap is present between the anion aromatic ring (C1–C6) and one six-membered ring of the cation (N10A, C9A, C8A, C7A, C6A, C14A) [minimum ring centroid separation, 3.6815 (12) Å] (Fig. 2), giving weak π–π stacking interactions (Fig. 3). The DCPA anion is essentially planar [torsion angles C2–C1–C11–O11, -168.30 (16)°: C1–C2–C21–O22, -179.53 (16)°], and exhibits a short intramolecular O–H···Ocarboxyl hydrogen bond [2.4054 (19) Å]. Associated with this bond is a significant distortion of the exo-C1 and C2 bond angles [C1–C2–C21, 128.55 (15) ° and C2–C1–C11, 129.18 (16) °]. This and a lengthening of the C1–C11 and C2–C21 bonds [1.538 (3) and 1.536 (3) Å] is common to the planar DCPA anions in the series of 1:1 proton-transfer compounds [angle range: 127.88 (16)° in the nicotinamide salt (Smith et al., 2009a) to 129.27 (14)° in the 8-aminoquinoline salt (Smith et al., 2008a); bond length range: 1.523 (3)–1.535 (3) Å, both in the brucinium salt (Smith et al., 2007).