organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyridine-3-carbo­nitrile–chloranilic acid–aceto­nitrile (2/1/2)

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

(Received 7 September 2009; accepted 10 September 2009; online 16 September 2009)

In the crystal structure of the title compound, 2C6H4N2·C6H2Cl2O4·2C2H3N, the two symmetry-related pyridine-3-carbonitrile mol­ecules are linked to either side of a chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydr­oxy-1,4-benzoquinone) mol­ecule via inter­molecular O—H⋯N hydrogen bonds, giving a centrosymmetric 2:1 unit. The dihedral angle between the pyridine ring and the chloranilic acid plane is 26.71 (6)°. In addition, the two acetonitrile mol­ecules are linked to either side of the 2:1 unit through C—H⋯N hydrogen bonds, forming a 2:1:2 aggregate. These 2:1:2 aggregates are further linked by weak inter­molecular C—H⋯N and C—H⋯O hydrogen bonds, forming a tape along the c axis.

Related literature

For related structures, see, for example: Gotoh et al. (2009[Gotoh, K., Nagoshi, H. & Ishida, H. (2009). Acta Cryst. C65, o273-o277.]); Gotoh, Asaji & Ishida (2008[Gotoh, K., Asaji, T. & Ishida, H. (2008). Acta Cryst. C64, o550-o553.]); Gotoh, Nagoshi & Ishida (2008[Gotoh, K., Nagoshi, H. & Ishida, H. (2008). Acta Cryst. E64, o1260.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H4N2·C6H2Cl2O4·2C2H3N

  • Mr = 499.31

  • Triclinic, [P \overline 1]

  • a = 3.91269 (16) Å

  • b = 10.8937 (9) Å

  • c = 13.5966 (5) Å

  • α = 105.302 (4)°

  • β = 90.0058 (14)°

  • γ = 90.847 (5)°

  • V = 558.93 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 180 K

  • 0.32 × 0.25 × 0.15 mm

Data collection
  • Rigaku RAXIS-RAPID II diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.906, Tmax = 0.951

  • 7721 measured reflections

  • 3232 independent reflections

  • 2592 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.099

  • S = 1.07

  • 3232 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.92 (3) 1.75 (3) 2.6111 (17) 154 (3)
O2—H2⋯O1i 0.92 (3) 2.25 (3) 2.6824 (14) 108 (2)
C4—H4⋯N2ii 0.95 2.46 3.292 (2) 146
C6—H6⋯N3 0.95 2.57 3.385 (2) 144
C7—H7⋯O1iii 0.95 2.48 3.4248 (18) 172
C11—H11A⋯N2 0.98 2.62 3.341 (2) 130
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y+1, z.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–chloranilic acid systems (Gotoh, Asaji & Ishida, 2008; Gotoh et al., 2009).

In the crystal structure of the title compound, two pyridine-3-carbonitrile molecules, one chloranilic acid molecule and two acetonitrile molecules are linked by O—H···N and C—H···N hydrogen bonds (Table 1) to afford a 2:1:2 aggregate (Fig. 1). The O···N distance [2.6111 (17) Å] between the acid and the base is comparable to that of 2.610 (3) Å in pyridine-4-carbonitrile–chloranilic acid (1/1), where the H atom in the O···H···N hydrogen bond is disordered (Gotoh, Nagoshi & Ishida, 2008), but in the title compound no distinct evidence of H disorder was observed in a difference Fourier map. The 2:1:2 aggregates are linked by weak intermolecular C—H···N and C—H···O hydrogen bonds, forming a tape along the c axis (Fig. 2). A short contact between the adjacent CN bonds of acetonitrile molecules is observed [C10···C10iii 3.314 Å; symmetry code: (iii) -x - 1, -y + 2, -z + 1].

Related literature top

For related structures, see, for example: Gotoh et al. (2009); Gotoh, Asaji & Ishida (2008); Gotoh, Nagoshi & Ishida (2008).

Experimental top

Single crystals were obtained by slow evaporation from an acetonitrile solution (120 ml) of chloranilic acid (250 mg) and pyridine-3-carbonitrile (250 mg) at room temperature.

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.95 or 0.98 Å) and refined as riding, allowing for free rotation of the methyl group. Uiso(H) values were set at 1.2Ueq(C) or 1.5Ueq(methyl C). The O-bound H atom was found in a difference Fourier map and refined isotropically. The refined O—H distance is 0.92 (3) Å.

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. The dashed lines indicate O—H···O, O—H···N and C—H···N hydrogen bonds. [Symmetry code: (i) -x + 2, -y, -z].
[Figure 2] Fig. 2. A packing diagram of (I), showing a molecular tape running along the c axis. The dashed lines indicate O—H···O, O—H···N, C—H···N and C—H···O hydrogen bonds.
Pyridine-3-carbonitrile–chloranilic acid–acetonitrile (2/1/2) top
Crystal data top
2C6H4N2·C6H2Cl2O4·2C2H3NZ = 1
Mr = 499.31F(000) = 256.00
Triclinic, P1Dx = 1.483 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 3.91269 (16) ÅCell parameters from 6412 reflections
b = 10.8937 (9) Åθ = 3.1–30.1°
c = 13.5966 (5) ŵ = 0.33 mm1
α = 105.302 (4)°T = 180 K
β = 90.0058 (14)°Block, brown
γ = 90.847 (5)°0.32 × 0.25 × 0.15 mm
V = 558.93 (6) Å3
Data collection top
Rigaku RAXIS-RAPID II
diffractometer
2592 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.031
ω scansθmax = 30.0°
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
h = 55
Tmin = 0.906, Tmax = 0.951k = 1515
7721 measured reflectionsl = 1917
3232 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.1506P]
where P = (Fo2 + 2Fc2)/3
3232 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
2C6H4N2·C6H2Cl2O4·2C2H3Nγ = 90.847 (5)°
Mr = 499.31V = 558.93 (6) Å3
Triclinic, P1Z = 1
a = 3.91269 (16) ÅMo Kα radiation
b = 10.8937 (9) ŵ = 0.33 mm1
c = 13.5966 (5) ÅT = 180 K
α = 105.302 (4)°0.32 × 0.25 × 0.15 mm
β = 90.0058 (14)°
Data collection top
Rigaku RAXIS-RAPID II
diffractometer
3232 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
2592 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.951Rint = 0.031
7721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.44 e Å3
3232 reflectionsΔρmin = 0.28 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.74850 (9)0.11634 (3)0.17747 (2)0.02647 (10)
O11.1404 (3)0.24034 (9)0.00816 (7)0.0278 (2)
O20.6357 (3)0.14675 (10)0.16065 (7)0.0294 (2)
N10.4384 (3)0.38133 (11)0.18840 (9)0.0268 (2)
N20.2005 (4)0.63890 (12)0.52232 (10)0.0347 (3)
N30.2867 (4)0.85277 (13)0.41743 (11)0.0400 (3)
C11.0708 (3)0.12968 (12)0.00163 (9)0.0213 (2)
C20.8789 (3)0.04984 (12)0.08193 (9)0.0208 (2)
C30.8076 (3)0.07272 (12)0.08605 (9)0.0215 (2)
C40.3922 (4)0.43073 (12)0.28796 (10)0.0254 (3)
H40.44230.38050.33350.031*
C50.2725 (3)0.55390 (12)0.32762 (10)0.0233 (3)
C60.1973 (4)0.62808 (13)0.26185 (10)0.0265 (3)
H60.11690.71240.28710.032*
C70.2431 (4)0.57525 (13)0.15812 (11)0.0281 (3)
H70.19220.62270.11060.034*
C80.3640 (4)0.45244 (13)0.12482 (10)0.0270 (3)
H80.39560.41710.05370.032*
C90.2324 (4)0.60218 (13)0.43620 (10)0.0263 (3)
C100.2753 (4)0.87366 (14)0.50394 (12)0.0310 (3)
C110.2586 (4)0.90013 (16)0.61421 (12)0.0365 (3)
H11A0.09330.84360.63320.055*
H11B0.48460.88570.64060.055*
H11C0.18690.98890.64320.055*
H20.596 (7)0.226 (3)0.152 (2)0.082 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03569 (18)0.02348 (16)0.02309 (16)0.00415 (12)0.00557 (12)0.01100 (11)
O10.0404 (5)0.0181 (4)0.0255 (5)0.0062 (4)0.0045 (4)0.0065 (4)
O20.0445 (6)0.0199 (5)0.0242 (5)0.0089 (4)0.0100 (4)0.0058 (4)
N10.0349 (6)0.0203 (5)0.0252 (5)0.0066 (4)0.0041 (5)0.0061 (4)
N20.0488 (8)0.0284 (6)0.0272 (6)0.0078 (5)0.0018 (5)0.0075 (5)
N30.0512 (8)0.0302 (7)0.0380 (7)0.0070 (6)0.0065 (6)0.0076 (5)
C10.0267 (6)0.0180 (5)0.0194 (5)0.0010 (4)0.0019 (5)0.0053 (4)
C20.0272 (6)0.0186 (6)0.0174 (5)0.0009 (4)0.0006 (5)0.0060 (4)
C30.0268 (6)0.0188 (6)0.0188 (5)0.0017 (4)0.0010 (5)0.0045 (4)
C40.0321 (7)0.0199 (6)0.0254 (6)0.0057 (5)0.0015 (5)0.0077 (5)
C50.0272 (6)0.0199 (6)0.0226 (6)0.0024 (5)0.0009 (5)0.0049 (5)
C60.0327 (7)0.0188 (6)0.0286 (7)0.0065 (5)0.0026 (5)0.0070 (5)
C70.0365 (7)0.0238 (6)0.0261 (6)0.0066 (5)0.0010 (5)0.0100 (5)
C80.0348 (7)0.0229 (6)0.0235 (6)0.0048 (5)0.0036 (5)0.0062 (5)
C90.0316 (7)0.0205 (6)0.0273 (6)0.0052 (5)0.0015 (5)0.0067 (5)
C100.0307 (7)0.0227 (6)0.0387 (8)0.0033 (5)0.0063 (6)0.0061 (5)
C110.0407 (8)0.0335 (8)0.0329 (8)0.0040 (6)0.0042 (6)0.0044 (6)
Geometric parameters (Å, º) top
Cl1—C21.7200 (13)C4—H40.9500
O1—C11.2201 (15)C5—C61.3884 (18)
O2—C31.3099 (15)C5—C91.4399 (18)
O2—H20.91 (3)C6—C71.3883 (19)
N1—C41.3316 (17)C6—H60.9500
N1—C81.3387 (18)C7—C81.3848 (19)
N2—C91.1406 (18)C7—H70.9500
N3—C101.138 (2)C8—H80.9500
C1—C21.4521 (17)C10—C111.451 (2)
C1—C3i1.5153 (18)C11—H11A0.9800
C2—C31.3546 (17)C11—H11B0.9800
C3—C1i1.5153 (18)C11—H11C0.9800
C4—C51.3955 (18)
C3—O2—H2114.0 (17)C7—C6—C5117.96 (12)
C4—N1—C8118.49 (11)C7—C6—H6121.0
O1—C1—C2123.93 (12)C5—C6—H6121.0
O1—C1—C3i117.75 (11)C8—C7—C6119.07 (12)
C2—C1—C3i118.31 (10)C8—C7—H7120.5
C3—C2—C1121.90 (11)C6—C7—H7120.5
C3—C2—Cl1120.77 (10)N1—C8—C7122.88 (13)
C1—C2—Cl1117.33 (9)N1—C8—H8118.6
O2—C3—C2123.08 (12)C7—C8—H8118.6
O2—C3—C1i117.14 (11)N2—C9—C5179.14 (15)
C2—C3—C1i119.78 (11)N3—C10—C11179.69 (18)
N1—C4—C5122.13 (12)C10—C11—H11A109.5
N1—C4—H4118.9C10—C11—H11B109.5
C5—C4—H4118.9H11A—C11—H11B109.5
C6—C5—C4119.46 (12)C10—C11—H11C109.5
C6—C5—C9121.20 (12)H11A—C11—H11C109.5
C4—C5—C9119.34 (12)H11B—C11—H11C109.5
O1—C1—C2—C3179.96 (13)C8—N1—C4—C50.6 (2)
C3i—C1—C2—C30.1 (2)N1—C4—C5—C60.2 (2)
O1—C1—C2—Cl10.78 (18)N1—C4—C5—C9179.19 (13)
C3i—C1—C2—Cl1179.23 (9)C4—C5—C6—C70.4 (2)
C1—C2—C3—O2179.86 (12)C9—C5—C6—C7179.82 (13)
Cl1—C2—C3—O20.72 (19)C5—C6—C7—C80.6 (2)
C1—C2—C3—C1i0.1 (2)C4—N1—C8—C70.4 (2)
Cl1—C2—C3—C1i179.21 (9)C6—C7—C8—N10.3 (2)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.92 (3)1.75 (3)2.6111 (17)154 (3)
O2—H2···O1i0.92 (3)2.25 (3)2.6824 (14)108 (2)
C4—H4···N2ii0.952.463.292 (2)146
C6—H6···N30.952.573.385 (2)144
C7—H7···O1iii0.952.483.4248 (18)172
C11—H11A···N20.982.623.341 (2)130
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z+1; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula2C6H4N2·C6H2Cl2O4·2C2H3N
Mr499.31
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)3.91269 (16), 10.8937 (9), 13.5966 (5)
α, β, γ (°)105.302 (4), 90.0058 (14), 90.847 (5)
V3)558.93 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.32 × 0.25 × 0.15
Data collection
DiffractometerRigaku RAXIS-RAPID II
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.906, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
7721, 3232, 2592
Rint0.031
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.099, 1.07
No. of reflections3232
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.28

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.92 (3)1.75 (3)2.6111 (17)154 (3)
O2—H2···O1i0.92 (3)2.25 (3)2.6824 (14)108 (2)
C4—H4···N2ii0.952.463.292 (2)146
C6—H6···N30.952.573.385 (2)144
C7—H7···O1iii0.952.483.4248 (18)172
C11—H11A···N20.982.623.341 (2)130
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z+1; (iii) x1, y+1, z.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 19550018) from the Japanese Society for the Promotion of Science.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Asaji, T. & Ishida, H. (2008). Acta Cryst. C64, o550–o553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Nagoshi, H. & Ishida, H. (2008). Acta Cryst. E64, o1260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Nagoshi, H. & Ishida, H. (2009). Acta Cryst. C65, o273–o277.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds