organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,9-Bis(4-pyridylmeth­­oxy)-1,10-phenanthroline

aDepartment of Chemistry and Chemical Engineering, Institute of Materials Chemistry, Binzhou University, Binzhou 256603, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: zhangshiguo1970@yahoo.com.cn

(Received 14 September 2009; accepted 21 September 2009; online 26 September 2009)

In the title mol­ecule, C24H18N4O2, the dihedral angles between the mean plane of the phenanthroline ring system and the pyridine rings are 82.52 (5) and 71.58 (4)°. The dihedral angle between the two pyridine ring planes is 53.54 (6)°. In the crystal structure, there are ππ stacking inter­actions between 1,10-phenanthroline rings, with centroid–centroid distances of 3.6101 (11) and 3.5864 (11) Å.

Related literature

For related structures, see: Liu et al. (2008[Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58-m60.]); Zhang & Hou (2008[Zhang, S. G. & Hou, C. (2008). Acta Cryst. E64, o1450.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18N4O2

  • Mr = 394.42

  • Monoclinic, P 21 /c

  • a = 12.701 (2) Å

  • b = 16.418 (3) Å

  • c = 9.7443 (16) Å

  • β = 107.535 (2)°

  • V = 1937.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.51 × 0.40 × 0.38 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.956, Tmax = 0.967

  • 9860 measured reflections

  • 3530 independent reflections

  • 2603 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.03

  • 3530 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry and a number of the derivatives (e.g. Liu et al., 2008; Zhang et al. 2008) have been synthesized and used as ligands to prepare new complexes. Herein we report the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. There are two ππ stacking interactions involving 1,10-phenathroline ring systems, one involving symmetry related pyridine rings with the relevant distances being Cg1···Cg2i = 3.6101 (11) Å and Cg1···Cg2iperp = 3.373 Å and α = 1.63°; another from the adjacent pyridine rings and the benzene rings with the relevant distances being Cg2···Cg3i = 3.5864 (11) Å and Cg2···Cg3iperp = 3.383 Å and α = 1.29° [symmetry code: (i) 1 - x, -y, 1 - z; Cg1, Cg2 and Cg3 are the centroids of C1—C5/N3 ring, C8—C12/N4 ring and C4—C9 ring, respectively; Cgi···Cgjperp is the perpendicular distance from ring Cgi to ring Cgji; α is the dihedral angle between ring plane Cgi and ring plane Cgji].

Related literature top

For related structures, see: Liu et al. (2008); Zhang et al. (2008).

Experimental top

Powdered 2,9-Bis((pyridin-4-yl)methoxy)-1,10-phenanthroline (0.1025 g, 0.260 mmol) was dissolved in 15 ml methanol and yellow single crystals were obtained after the filtrate had been allowed to stand at room temperature for four weeks.

Refinement top

All H atoms were placed in calculated positions and refined as riding with C—H = 0.97 Å for methylene groups and C—H = 0.93 Å for other H atoms and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
2,9-Bis(4-pyridylmethoxy)-1,10-phenanthroline top
Crystal data top
C24H18N4O2F(000) = 824
Mr = 394.42Dx = 1.352 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2776 reflections
a = 12.701 (2) Åθ = 2.5–25.2°
b = 16.418 (3) ŵ = 0.09 mm1
c = 9.7443 (16) ÅT = 298 K
β = 107.535 (2)°Block, yellow
V = 1937.5 (6) Å30.51 × 0.40 × 0.38 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3530 independent reflections
Radiation source: fine-focus sealed tube2603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1511
Tmin = 0.956, Tmax = 0.967k = 1419
9860 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.0745P]
where P = (Fo2 + 2Fc2)/3
3530 reflections(Δ/σ)max = 0.002
271 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C24H18N4O2V = 1937.5 (6) Å3
Mr = 394.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.701 (2) ŵ = 0.09 mm1
b = 16.418 (3) ÅT = 298 K
c = 9.7443 (16) Å0.51 × 0.40 × 0.38 mm
β = 107.535 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3530 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2603 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.967Rint = 0.028
9860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.13 e Å3
3530 reflectionsΔρmin = 0.16 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.50194 (13)0.23897 (10)0.53260 (16)0.0523 (4)
C20.61170 (14)0.25413 (11)0.53679 (18)0.0622 (5)
H20.64880.30030.58190.075*
C30.66137 (14)0.19987 (12)0.47360 (18)0.0626 (5)
H30.73390.20850.47430.075*
C40.60421 (12)0.12976 (10)0.40609 (16)0.0524 (4)
C50.49508 (11)0.12005 (9)0.40882 (14)0.0449 (4)
C60.65165 (13)0.07031 (12)0.33719 (18)0.0643 (5)
H60.72390.07690.33530.077*
C70.59392 (14)0.00485 (12)0.27477 (19)0.0646 (5)
H70.62680.03330.23010.078*
C80.43337 (11)0.04990 (9)0.34246 (15)0.0441 (4)
C90.48333 (12)0.00739 (10)0.27554 (16)0.0516 (4)
C100.42012 (14)0.07576 (11)0.21217 (17)0.0600 (4)
H100.45010.11460.16530.072*
C110.31631 (14)0.08512 (10)0.21916 (17)0.0579 (4)
H110.27370.13000.17800.069*
C120.27507 (12)0.02471 (10)0.29082 (16)0.0486 (4)
C130.12405 (13)0.01882 (12)0.37343 (18)0.0623 (5)
H13A0.18290.04880.44130.075*
H13B0.08300.01000.42760.075*
C140.04897 (11)0.07741 (10)0.27374 (18)0.0542 (4)
C150.03967 (13)0.08218 (11)0.12927 (18)0.0610 (5)
H150.08320.04920.09060.073*
C160.03412 (15)0.13578 (12)0.0426 (2)0.0752 (5)
H160.03890.13730.05450.090*
C170.01738 (13)0.12956 (12)0.3232 (2)0.0675 (5)
H170.01410.12960.41990.081*
C180.08782 (15)0.18100 (14)0.2280 (3)0.0829 (6)
H180.13130.21550.26390.100*
C190.26496 (12)0.31914 (10)0.46362 (16)0.0526 (4)
C200.13577 (17)0.31235 (18)0.2316 (2)0.0918 (7)
H200.09680.28030.15420.110*
C210.20466 (15)0.27345 (13)0.34918 (19)0.0721 (5)
H210.21030.21700.35120.087*
C220.17931 (16)0.43588 (14)0.3319 (2)0.0781 (6)
H220.17100.49220.32810.094*
C230.25156 (14)0.40236 (12)0.4528 (2)0.0636 (5)
H230.29140.43580.52750.076*
C240.34284 (14)0.28164 (11)0.59467 (17)0.0622 (5)
H24A0.33050.30510.67990.075*
H24B0.32880.22360.59500.075*
N10.09879 (13)0.18537 (11)0.0876 (2)0.0860 (5)
N20.12073 (13)0.39253 (15)0.2202 (2)0.0891 (6)
N30.44458 (9)0.17568 (8)0.47191 (12)0.0472 (3)
N40.32756 (9)0.04086 (7)0.34768 (12)0.0455 (3)
O10.17152 (8)0.03913 (7)0.29945 (12)0.0615 (3)
O20.45550 (9)0.29496 (7)0.59879 (12)0.0660 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0513 (9)0.0475 (10)0.0472 (9)0.0005 (8)0.0017 (7)0.0046 (8)
C20.0538 (10)0.0537 (11)0.0650 (11)0.0114 (8)0.0031 (8)0.0087 (9)
C30.0434 (9)0.0704 (12)0.0662 (11)0.0102 (9)0.0049 (8)0.0173 (10)
C40.0418 (8)0.0599 (11)0.0521 (9)0.0008 (8)0.0091 (7)0.0135 (8)
C50.0419 (8)0.0474 (9)0.0402 (8)0.0014 (7)0.0043 (6)0.0088 (7)
C60.0431 (9)0.0840 (14)0.0664 (11)0.0034 (9)0.0176 (8)0.0102 (10)
C70.0553 (10)0.0762 (13)0.0658 (11)0.0124 (10)0.0234 (8)0.0016 (9)
C80.0400 (8)0.0485 (9)0.0401 (8)0.0042 (7)0.0064 (6)0.0061 (7)
C90.0500 (9)0.0556 (10)0.0473 (9)0.0088 (8)0.0118 (7)0.0023 (8)
C100.0637 (11)0.0539 (11)0.0575 (10)0.0119 (8)0.0109 (8)0.0084 (8)
C110.0591 (10)0.0460 (10)0.0590 (10)0.0009 (8)0.0032 (8)0.0056 (8)
C120.0421 (8)0.0457 (9)0.0513 (9)0.0006 (7)0.0038 (7)0.0036 (7)
C130.0459 (9)0.0767 (12)0.0654 (10)0.0077 (9)0.0185 (8)0.0004 (9)
C140.0365 (8)0.0619 (11)0.0620 (10)0.0109 (7)0.0114 (7)0.0110 (8)
C150.0481 (9)0.0693 (12)0.0631 (11)0.0026 (8)0.0130 (8)0.0089 (9)
C160.0634 (11)0.0867 (15)0.0662 (11)0.0084 (11)0.0054 (9)0.0062 (11)
C170.0475 (10)0.0841 (14)0.0718 (11)0.0079 (9)0.0192 (9)0.0200 (10)
C180.0513 (11)0.0878 (16)0.1067 (18)0.0102 (10)0.0193 (11)0.0274 (13)
C190.0510 (9)0.0587 (11)0.0521 (9)0.0031 (8)0.0216 (7)0.0066 (8)
C200.0708 (14)0.122 (2)0.0703 (13)0.0159 (13)0.0028 (10)0.0075 (14)
C210.0717 (12)0.0748 (13)0.0633 (11)0.0110 (10)0.0107 (9)0.0086 (10)
C220.0615 (12)0.0805 (14)0.1001 (16)0.0159 (11)0.0363 (12)0.0180 (13)
C230.0602 (10)0.0630 (12)0.0709 (11)0.0037 (9)0.0246 (9)0.0052 (9)
C240.0737 (12)0.0593 (11)0.0532 (10)0.0022 (9)0.0184 (8)0.0102 (8)
N10.0628 (10)0.0889 (13)0.0937 (13)0.0183 (9)0.0047 (9)0.0108 (10)
N20.0573 (10)0.1221 (17)0.0853 (12)0.0093 (11)0.0178 (9)0.0238 (13)
N30.0450 (7)0.0455 (8)0.0446 (7)0.0008 (6)0.0038 (5)0.0012 (6)
N40.0408 (7)0.0447 (8)0.0469 (7)0.0008 (6)0.0070 (5)0.0016 (6)
O10.0450 (6)0.0579 (7)0.0769 (8)0.0079 (5)0.0111 (5)0.0047 (6)
O20.0624 (8)0.0551 (7)0.0686 (7)0.0029 (6)0.0017 (6)0.0150 (6)
Geometric parameters (Å, º) top
C1—N31.3041 (19)C13—H13A0.9700
C1—O21.3558 (19)C13—H13B0.9700
C1—C21.405 (2)C14—C151.379 (2)
C2—C31.343 (2)C14—C171.386 (2)
C2—H20.9300C15—C161.374 (2)
C3—C41.413 (2)C15—H150.9300
C3—H30.9300C16—N11.322 (2)
C4—C51.403 (2)C16—H160.9300
C4—C61.418 (2)C17—C181.369 (3)
C5—N31.3641 (19)C17—H170.9300
C5—C81.433 (2)C18—N11.335 (3)
C6—C71.339 (2)C18—H180.9300
C6—H60.9300C19—C211.370 (2)
C7—C91.421 (2)C19—C231.377 (2)
C7—H70.9300C19—C241.492 (2)
C8—N41.3681 (18)C20—N21.330 (3)
C8—C91.401 (2)C20—C211.372 (3)
C9—C101.410 (2)C20—H200.9300
C10—C111.349 (2)C21—H210.9300
C10—H100.9300C22—N21.325 (3)
C11—C121.402 (2)C22—C231.372 (3)
C11—H110.9300C22—H220.9300
C12—N41.2992 (18)C23—H230.9300
C12—O11.3636 (17)C24—O21.436 (2)
C13—O11.432 (2)C24—H24A0.9700
C13—C141.490 (2)C24—H24B0.9700
N3—C1—O2119.50 (14)C15—C14—C17116.50 (16)
N3—C1—C2124.64 (16)C15—C14—C13122.91 (15)
O2—C1—C2115.86 (15)C17—C14—C13120.58 (16)
C3—C2—C1117.91 (16)C16—C15—C14119.77 (17)
C3—C2—H2121.0C16—C15—H15120.1
C1—C2—H2121.0C14—C15—H15120.1
C2—C3—C4120.48 (15)N1—C16—C15124.57 (19)
C2—C3—H3119.8N1—C16—H16117.7
C4—C3—H3119.8C15—C16—H16117.7
C5—C4—C3117.10 (15)C18—C17—C14119.14 (17)
C5—C4—C6119.59 (15)C18—C17—H17120.4
C3—C4—C6123.31 (15)C14—C17—H17120.4
N3—C5—C4122.25 (14)N1—C18—C17124.95 (18)
N3—C5—C8118.29 (12)N1—C18—H18117.5
C4—C5—C8119.46 (14)C17—C18—H18117.5
C7—C6—C4120.99 (15)C21—C19—C23117.07 (17)
C7—C6—H6119.5C21—C19—C24122.29 (16)
C4—C6—H6119.5C23—C19—C24120.63 (15)
C6—C7—C9121.18 (16)N2—C20—C21124.7 (2)
C6—C7—H7119.4N2—C20—H20117.6
C9—C7—H7119.4C21—C20—H20117.6
N4—C8—C9122.16 (14)C19—C21—C20119.0 (2)
N4—C8—C5118.70 (13)C19—C21—H21120.5
C9—C8—C5119.14 (13)C20—C21—H21120.5
C8—C9—C10117.42 (14)N2—C22—C23123.7 (2)
C8—C9—C7119.64 (15)N2—C22—H22118.2
C10—C9—C7122.93 (15)C23—C22—H22118.2
C11—C10—C9120.31 (15)C22—C23—C19119.93 (18)
C11—C10—H10119.8C22—C23—H23120.0
C9—C10—H10119.8C19—C23—H23120.0
C10—C11—C12117.52 (15)O2—C24—C19111.04 (13)
C10—C11—H11121.2O2—C24—H24A109.4
C12—C11—H11121.2C19—C24—H24A109.4
N4—C12—O1119.88 (14)O2—C24—H24B109.4
N4—C12—C11125.30 (14)C19—C24—H24B109.4
O1—C12—C11114.82 (14)H24A—C24—H24B108.0
O1—C13—C14112.62 (14)C16—N1—C18115.06 (17)
O1—C13—H13A109.1C22—N2—C20115.61 (18)
C14—C13—H13A109.1C1—N3—C5117.62 (13)
O1—C13—H13B109.1C12—N4—C8117.24 (13)
C14—C13—H13B109.1C12—O1—C13118.41 (12)
H13A—C13—H13B107.8C1—O2—C24117.13 (12)
N3—C1—C2—C30.2 (2)C14—C15—C16—N10.5 (3)
O2—C1—C2—C3179.44 (14)C15—C14—C17—C180.8 (2)
C1—C2—C3—C40.3 (2)C13—C14—C17—C18178.10 (16)
C2—C3—C4—C50.1 (2)C14—C17—C18—N10.2 (3)
C2—C3—C4—C6179.82 (15)C23—C19—C21—C200.4 (2)
C3—C4—C5—N30.7 (2)C24—C19—C21—C20179.17 (16)
C6—C4—C5—N3179.19 (13)N2—C20—C21—C191.4 (3)
C3—C4—C5—C8179.77 (13)N2—C22—C23—C191.0 (3)
C6—C4—C5—C80.3 (2)C21—C19—C23—C220.7 (2)
C5—C4—C6—C70.1 (2)C24—C19—C23—C22179.74 (15)
C3—C4—C6—C7179.96 (15)C21—C19—C24—O2106.35 (17)
C4—C6—C7—C90.1 (3)C23—C19—C24—O273.16 (19)
N3—C5—C8—N41.30 (19)C15—C16—N1—C180.5 (3)
C4—C5—C8—N4179.19 (12)C17—C18—N1—C160.8 (3)
N3—C5—C8—C9179.21 (12)C23—C22—N2—C200.1 (3)
C4—C5—C8—C90.3 (2)C21—C20—N2—C221.1 (3)
N4—C8—C9—C100.2 (2)O2—C1—N3—C5178.81 (12)
C5—C8—C9—C10179.67 (13)C2—C1—N3—C50.4 (2)
N4—C8—C9—C7179.36 (13)C4—C5—N3—C10.9 (2)
C5—C8—C9—C70.1 (2)C8—C5—N3—C1179.62 (12)
C6—C7—C9—C80.1 (2)O1—C12—N4—C8176.56 (12)
C6—C7—C9—C10179.45 (16)C11—C12—N4—C82.9 (2)
C8—C9—C10—C111.1 (2)C9—C8—N4—C121.7 (2)
C7—C9—C10—C11178.44 (15)C5—C8—N4—C12177.73 (12)
C9—C10—C11—C120.1 (2)N4—C12—O1—C130.8 (2)
C10—C11—C12—N42.1 (2)C11—C12—O1—C13178.80 (13)
C10—C11—C12—O1177.47 (13)C14—C13—O1—C1297.39 (15)
O1—C13—C14—C158.9 (2)N3—C1—O2—C241.5 (2)
O1—C13—C14—C17169.93 (14)C2—C1—O2—C24179.22 (13)
C17—C14—C15—C161.1 (2)C19—C24—O2—C188.63 (16)
C13—C14—C15—C16177.76 (15)

Experimental details

Crystal data
Chemical formulaC24H18N4O2
Mr394.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.701 (2), 16.418 (3), 9.7443 (16)
β (°) 107.535 (2)
V3)1937.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.51 × 0.40 × 0.38
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.956, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
9860, 3530, 2603
Rint0.028
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.03
No. of reflections3530
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Project of Scientific Studies Development of Shandong Provincial Education Department (grant No. J08LC51) and the Natural Science Foundation of Shandong Province of China (grant No. Y2007B26).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. G. & Hou, C. (2008). Acta Cryst. E64, o1450.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds