organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(1,3-Benzo­thia­zol-2-yl)-3-(4-chloro­benzo­yl)thio­urea

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Terengganu, Malaysia, and bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: mohdsukeri@umt.edu.my

(Received 25 August 2009; accepted 16 September 2009; online 26 September 2009)

The title compound, C15H10ClN3OS2, adopts a cis–trans configuration across the thio­urea C—N bonds with respect to the positions of the benzothia­zole and 4-chloro­benzoyl groups relative to thiono S atom. An intra­molecular N—H⋯O hydrogen bond is present. In the crystal structure, mol­ecules are linked by a weak inter­molecular N—H⋯S hydrogen bond, forming centrosymmetric dimers.

Related literature

For the biological activity of thia­diazo­les, see: Shukla & Srivastava (2008[Shukla, D. K. & Srivastava, S. D. (2008). Indian J. Chem. Sect. B, 47, 463-469.]); Göblyös et al. (2005[Göblyös, A., Vries, H., Brussee, J. & Ijzerman, A. P. (2005). J. Med. Chem. 48, 1145-1151.]); Terzioglu & Gürsoy (2003[Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]); Rana et al. (2008[Rana, A., Siddiqui, N., Khan, S. A., Haque, S. E. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114-1122.]). For their potential as insecticides and fungicides, see: Jian et al. (2005[Jian, F., Zhao, P., Hou, Y. & Lu, L. (2005). Struct. Chem. 16, 123-128.]). For C—S and C—O bond lengths, see: Saeed & Flörke (2006[Saeed, A. & Flörke, U. (2006). Acta Cryst. E62, o2924-o2925.]); Yamin & Yusof (2003[Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151-o152.]). For the structures of other benzoyl­thio­urea derivatives, see: Dillen et al. (2006[Dillen, J., Woldu, M. G. & Koch, K. R. (2006). Acta Cryst. E62, o5225-o5227.]); Khawar Rauf et al. (2006[Khawar Rauf, M., Badshah, A. & Flörke, U. (2006). Acta Cryst. E62, o2452-o2453.]); Weiqun et al. (2004[Weiqun, Z., Baolong, L., Liming, Z., Jiangang, D., Yong, Z., Lude, L. & Xujie, Y. (2004). J. Mol. Struct. 690, 145-150.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClN3OS2

  • Mr = 347.83

  • Monoclinic, P 21 /c

  • a = 11.726 (2) Å

  • b = 17.934 (4) Å

  • c = 7.2617 (16) Å

  • β = 96.848 (4)°

  • V = 1516.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 298 K

  • 0.55 × 0.42 × 0.40 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.759, Tmax = 0.816

  • 11030 measured reflections

  • 3772 independent reflections

  • 2891 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.05

  • 3772 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.88 2.6056 (19) 141
N1—H1A⋯S1i 0.86 2.75 3.5377 (17) 152
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

For the past few decades, heterocycles featuring thiadiazoles which consist of sulfur and nitrogen have been developed consistenly to act as drugs as well as to play an active role in numerous biological activities (Shukla & Srivastava 2008; Göblyös et al. 2005). These derivatives have been shown to exhibit anticancer, antitubercular and anticonvulsant activities (Terzioglu & Gürsoy 2003; Rana et al. 2008). In agriculture, thiadiazole derivatives have a potential as insecticide and fungicide (Jian et al. 2005). The title compound (I), adopts cis-trans configuration with respect to the positions of the benzothiazole and 4-chlorobenzoyl groups relative to the thiono S atom, across their C—N bonds (Fig 1). The central carbonyl thiourea moiety (S1/C8/N1/N2/C7/O1), phenyl ring (C1—C6) and benzothiazole (S2/N3/C9—C15) groups are all planar, with a maximum deviation of 0.021 (1)Å for atom C10 from the least-squares plane. The central carbonyl thiourea fragment makes dihedral angles of 24.09 (7)° and 4.58 (4)° with the phenyl ring and benzothiazole group, respectively. The two aryl rings are inclined to each other at an angle of 28.42 (8)°. The C8—S1 and C7—O1 bond length show the expected double bond character of 1.6570 (17)Å and 1.2245 (19)Å (Saeed & Flörke 2006; Yamin & Yusof 2003). The N1—C8 is longer than N2—C8 by 0.045 Å, similar to other benzoylthiourea derivatives (Dillen et al. 2006; Khawar Rauf et al. 2006) which is probably due to the intramolecular hydrogen bonding interaction (Weiqun et al. 2004).

There is an intramolecular hydrogen bond, N2—H2···O1 forming a pseudo-six-membered ring, O1···H2—N2—C8—N1—C7—O1 (Fig.1). In the crystal structure, the molecules are linked by a weak intermolecular interaction N1—H1A···S1 (symmetry codes as in Table 1) forming dimers (Fig. 2).

Related literature top

For the biological activity of thiadiazoles, see: Shukla & Srivastava (2008); Göblyös et al. (2005); Terzioglu & Gürsoy (2003); Rana et al. (2008). For their potential as insecticides and fungicides, see: Jian et al. (2005). For C—S and C—O bond lengths, see: Saeed & Flörke (2006); Yamin & Yusof (2003). For other benzoylthiourea derivatives, see: Dillen et al. (2006); Khawar Rauf et al. (2006); Weiqun et al. (2004).

Experimental top

To a stirring acetone solution (75 ml) of 4-chlorobenzoyl chloride (2.0 g, 11.4 mmol) and ammoniumthiocyanate (0.87 g, 11.4 mmol), 2-aminobenzothiazole (1.17 g, 11.4 mmol) in 40 ml of acetone was added dropwise. The solution mixture was put at reflux for 1 h. The resulting solution was poured into a beaker containing some ice blocks. The light yellow precipitate was filtered off and washed with distilled water and cold ethanol before dried under vacuum. Good quality crystals were obtained by recrystallization from DMSO.

Refinement top

After their location in the difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent C or N atoms with C—H = 0.93Å and N—H = 0.86Å with Uiso(H)= 1.2 (CH and NH).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram of compound (I), viewed down the b axis. The dashed lines denote the N—H···S hydrogen bond.
1-(1,3-Benzothiazol-2-yl)-3-(4-chlorobenzoyl)thiourea top
Crystal data top
C15H10ClN3OS2F(000) = 712
Mr = 347.83Dx = 1.524 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 906 reflections
a = 11.726 (2) Åθ = 1.8–28.3°
b = 17.934 (4) ŵ = 0.53 mm1
c = 7.2617 (16) ÅT = 298 K
β = 96.848 (4)°Block, light yellow
V = 1516.1 (6) Å30.55 × 0.42 × 0.40 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3772 independent reflections
Radiation source: fine-focus sealed tube2891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 83.66 pixels mm-1θmax = 28.3°, θmin = 1.8°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 2320
Tmin = 0.759, Tmax = 0.816l = 89
11030 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.1737P]
where P = (Fo2 + 2Fc2)/3
3772 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H10ClN3OS2V = 1516.1 (6) Å3
Mr = 347.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.726 (2) ŵ = 0.53 mm1
b = 17.934 (4) ÅT = 298 K
c = 7.2617 (16) Å0.55 × 0.42 × 0.40 mm
β = 96.848 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3772 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2891 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.816Rint = 0.022
11030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
3772 reflectionsΔρmin = 0.22 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84415 (5)0.83795 (3)0.39677 (9)0.07175 (19)
S10.49665 (4)0.38829 (3)0.39437 (8)0.05844 (16)
S20.58802 (4)0.22891 (2)0.41252 (6)0.04563 (13)
O10.86117 (10)0.46684 (7)0.3645 (2)0.0549 (3)
N30.80322 (12)0.24282 (8)0.3637 (2)0.0474 (3)
N10.67029 (11)0.48112 (8)0.3894 (2)0.0450 (3)
H1A0.61830.51410.40050.054*
N20.71709 (11)0.35696 (7)0.3786 (2)0.0434 (3)
H2A0.78420.37500.36950.052*
C10.70106 (14)0.63867 (10)0.3181 (3)0.0491 (4)
H10.62910.61940.27540.059*
C20.71738 (15)0.71472 (10)0.3236 (3)0.0520 (4)
H20.65700.74690.28550.062*
C30.82429 (16)0.74219 (10)0.3862 (3)0.0489 (4)
C40.91544 (15)0.69616 (11)0.4420 (3)0.0551 (5)
H40.98730.71590.48320.066*
C50.89835 (14)0.61965 (10)0.4358 (3)0.0507 (4)
H50.95940.58770.47220.061*
C60.79104 (13)0.59043 (9)0.3759 (2)0.0418 (4)
C70.77928 (13)0.50832 (10)0.3753 (2)0.0420 (4)
C80.63429 (13)0.40769 (9)0.3881 (2)0.0417 (4)
C90.71104 (14)0.27973 (9)0.3813 (2)0.0404 (4)
C100.78156 (15)0.16707 (10)0.3728 (2)0.0459 (4)
C110.86167 (18)0.11049 (11)0.3579 (3)0.0612 (5)
H110.93720.12200.34210.073*
C120.82695 (19)0.03736 (12)0.3672 (3)0.0685 (6)
H120.87970.00070.35680.082*
C130.7148 (2)0.01951 (11)0.3915 (3)0.0657 (6)
H130.69320.03030.39640.079*
C140.63489 (17)0.07448 (10)0.4087 (3)0.0574 (5)
H140.55990.06240.42660.069*
C150.66891 (15)0.14852 (9)0.3988 (2)0.0447 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0907 (4)0.0384 (3)0.0882 (4)0.0049 (2)0.0194 (3)0.0016 (2)
S10.0365 (2)0.0450 (3)0.0947 (4)0.00093 (18)0.0117 (2)0.0050 (2)
S20.0387 (2)0.0442 (2)0.0534 (3)0.00318 (16)0.00325 (18)0.00143 (18)
O10.0381 (6)0.0427 (7)0.0842 (10)0.0047 (5)0.0088 (6)0.0007 (6)
N30.0428 (7)0.0402 (8)0.0602 (10)0.0005 (6)0.0099 (7)0.0024 (6)
N10.0356 (7)0.0381 (7)0.0618 (9)0.0029 (5)0.0076 (6)0.0010 (6)
N20.0352 (6)0.0381 (7)0.0567 (9)0.0015 (5)0.0045 (6)0.0020 (6)
C10.0366 (8)0.0454 (9)0.0649 (12)0.0015 (7)0.0046 (8)0.0055 (8)
C20.0449 (9)0.0453 (10)0.0664 (12)0.0083 (7)0.0085 (8)0.0083 (8)
C30.0570 (10)0.0360 (8)0.0557 (11)0.0018 (7)0.0150 (8)0.0002 (7)
C40.0428 (9)0.0491 (10)0.0727 (13)0.0069 (8)0.0042 (8)0.0027 (9)
C50.0361 (8)0.0456 (10)0.0696 (12)0.0023 (7)0.0037 (8)0.0028 (8)
C60.0355 (7)0.0401 (9)0.0503 (10)0.0012 (6)0.0071 (7)0.0008 (7)
C70.0353 (7)0.0438 (9)0.0469 (9)0.0007 (6)0.0043 (7)0.0009 (7)
C80.0391 (8)0.0404 (8)0.0455 (9)0.0001 (6)0.0043 (7)0.0014 (7)
C90.0387 (8)0.0399 (8)0.0419 (9)0.0021 (6)0.0018 (6)0.0021 (6)
C100.0486 (9)0.0411 (9)0.0476 (10)0.0009 (7)0.0034 (7)0.0031 (7)
C110.0588 (11)0.0462 (10)0.0798 (14)0.0061 (8)0.0135 (10)0.0040 (9)
C120.0754 (14)0.0442 (11)0.0844 (16)0.0115 (10)0.0034 (12)0.0080 (10)
C130.0804 (15)0.0391 (10)0.0735 (14)0.0046 (10)0.0076 (11)0.0004 (9)
C140.0605 (11)0.0462 (10)0.0628 (12)0.0098 (9)0.0035 (9)0.0046 (8)
C150.0482 (9)0.0414 (9)0.0427 (9)0.0020 (7)0.0018 (7)0.0006 (7)
Geometric parameters (Å, º) top
Cl1—C31.7334 (19)C2—H20.9300
S1—C81.6570 (17)C3—C41.373 (3)
S2—C151.7352 (18)C4—C51.386 (3)
S2—C91.7438 (17)C4—H40.9300
O1—C71.2245 (19)C5—C61.384 (2)
N3—C91.287 (2)C5—H50.9300
N3—C101.385 (2)C6—C71.479 (2)
N1—C81.383 (2)C10—C151.397 (2)
N1—C71.383 (2)C10—C111.396 (3)
N1—H1A0.8600C11—C121.377 (3)
N2—C81.338 (2)C11—H110.9300
N2—C91.387 (2)C12—C131.385 (3)
N2—H2A0.8600C12—H120.9300
C1—C21.377 (2)C13—C141.376 (3)
C1—C61.390 (2)C13—H130.9300
C1—H10.9300C14—C151.391 (2)
C2—C31.373 (3)C14—H140.9300
C15—S2—C987.73 (8)O1—C7—C6122.10 (15)
C9—N3—C10109.80 (14)N1—C7—C6115.95 (14)
C8—N1—C7128.28 (14)N2—C8—N1115.16 (14)
C8—N1—H1A115.9N2—C8—S1125.01 (13)
C7—N1—H1A115.9N1—C8—S1119.83 (12)
C8—N2—C9129.75 (14)N3—C9—N2117.86 (15)
C8—N2—H2A115.1N3—C9—S2117.51 (13)
C9—N2—H2A115.1N2—C9—S2124.62 (12)
C2—C1—C6120.65 (16)N3—C10—C15114.96 (15)
C2—C1—H1119.7N3—C10—C11125.47 (17)
C6—C1—H1119.7C15—C10—C11119.57 (17)
C3—C2—C1118.89 (16)C12—C11—C10118.9 (2)
C3—C2—H2120.6C12—C11—H11120.6
C1—C2—H2120.6C10—C11—H11120.6
C4—C3—C2122.00 (17)C11—C12—C13121.1 (2)
C4—C3—Cl1119.14 (15)C11—C12—H12119.4
C2—C3—Cl1118.86 (14)C13—C12—H12119.4
C3—C4—C5118.75 (17)C14—C13—C12120.87 (19)
C3—C4—H4120.6C14—C13—H13119.6
C5—C4—H4120.6C12—C13—H13119.6
C6—C5—C4120.48 (16)C13—C14—C15118.47 (19)
C6—C5—H5119.8C13—C14—H14120.8
C4—C5—H5119.8C15—C14—H14120.8
C5—C6—C1119.21 (16)C14—C15—C10121.07 (17)
C5—C6—C7117.30 (14)C14—C15—S2128.91 (15)
C1—C6—C7123.48 (15)C10—C15—S2110.01 (13)
O1—C7—N1121.94 (16)
C6—C1—C2—C30.3 (3)C10—N3—C9—S20.4 (2)
C1—C2—C3—C40.5 (3)C8—N2—C9—N3177.61 (17)
C1—C2—C3—Cl1178.90 (15)C8—N2—C9—S24.0 (3)
C2—C3—C4—C50.4 (3)C15—S2—C9—N30.44 (15)
Cl1—C3—C4—C5179.00 (15)C15—S2—C9—N2178.82 (15)
C3—C4—C5—C60.5 (3)C9—N3—C10—C150.2 (2)
C4—C5—C6—C11.4 (3)C9—N3—C10—C11179.64 (19)
C4—C5—C6—C7179.30 (17)N3—C10—C11—C12179.08 (18)
C2—C1—C6—C51.3 (3)C15—C10—C11—C120.8 (3)
C2—C1—C6—C7179.44 (17)C10—C11—C12—C130.3 (3)
C8—N1—C7—O12.2 (3)C11—C12—C13—C140.5 (3)
C8—N1—C7—C6178.38 (16)C12—C13—C14—C150.8 (3)
C5—C6—C7—O124.7 (3)C13—C14—C15—C100.3 (3)
C1—C6—C7—O1154.64 (18)C13—C14—C15—S2179.10 (15)
C5—C6—C7—N1154.75 (16)N3—C10—C15—C14179.37 (16)
C1—C6—C7—N125.9 (2)C11—C10—C15—C140.5 (3)
C9—N2—C8—N1177.45 (16)N3—C10—C15—S20.1 (2)
C9—N2—C8—S13.6 (3)C11—C10—C15—S2179.97 (15)
C7—N1—C8—N22.7 (3)C9—S2—C15—C14179.14 (18)
C7—N1—C8—S1176.34 (14)C9—S2—C15—C100.28 (13)
C10—N3—C9—N2178.94 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.882.6056 (19)141
N1—H1A···S1i0.862.753.5377 (17)152
C5—H5···O1ii0.932.493.389 (2)163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10ClN3OS2
Mr347.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.726 (2), 17.934 (4), 7.2617 (16)
β (°) 96.848 (4)
V3)1516.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.55 × 0.42 × 0.40
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.759, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
11030, 3772, 2891
Rint0.022
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.05
No. of reflections3772
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.882.6056 (19)141
N1—H1A···S1i0.862.753.5377 (17)152
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors would like to thank the Malaysian Government, Universiti Kebangsaan Malaysia, Universiti Malaysia Terengganu and the Ministry of Science, Technology and Innovation for the research grants e-science fund 52022.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDillen, J., Woldu, M. G. & Koch, K. R. (2006). Acta Cryst. E62, o5225–o5227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGöblyös, A., Vries, H., Brussee, J. & Ijzerman, A. P. (2005). J. Med. Chem. 48, 1145–1151.  Web of Science PubMed Google Scholar
First citationJian, F., Zhao, P., Hou, Y. & Lu, L. (2005). Struct. Chem. 16, 123–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Flörke, U. (2006). Acta Cryst. E62, o2452–o2453.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRana, A., Siddiqui, N., Khan, S. A., Haque, S. E. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114–1122.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaeed, A. & Flörke, U. (2006). Acta Cryst. E62, o2924–o2925.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShukla, D. K. & Srivastava, S. D. (2008). Indian J. Chem. Sect. B, 47, 463–469.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWeiqun, Z., Baolong, L., Liming, Z., Jiangang, D., Yong, Z., Lude, L. & Xujie, Y. (2004). J. Mol. Struct. 690, 145–150.  Web of Science CSD CrossRef Google Scholar
First citationYamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds