metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(1H-1,2,4-triazol-1-yl-κN2)-1,10-phenanthroline-κ2N,N′]zinc(II) bis­­(perchlorate)

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: shijingmin1955@yahoo.com.cn

(Received 14 September 2009; accepted 24 September 2009; online 3 October 2009)

In the title complex, [Zn(C14H9N5)2](ClO4)2, 2-(1H-1,2,4-triazol-1-yl)-1,10-phenanthroline functions as a tridentate ligand and the ZnII ion assumes a distorted octa­hedral ZnN6 coordination geometry. There is a weak ππ stacking inter­action between symmetry-related triazolyl rings with a centroid–centroid distance of 3.802 (4) Å and a perpendicular distance of 3.413 Å between the rings.

Related literature

For related structures, see: Li (2008[Li, J. M. (2008). Acta Cryst. E64, m982.]); Liu et al. (2008[Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58-m60.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C14H9N5)2](ClO4)2

  • Mr = 758.79

  • Monoclinic, C 2/c

  • a = 16.382 (2) Å

  • b = 26.278 (4) Å

  • c = 15.701 (2) Å

  • β = 117.399 (2)°

  • V = 6000.8 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.815, Tmax = 0.901

  • 17294 measured reflections

  • 6514 independent reflections

  • 3811 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.198

  • S = 1.02

  • 6514 reflections

  • 442 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—Zn1 2.072 (4)
N2—Zn1 2.235 (4)
N4—Zn1 2.220 (4)
N6—Zn1 2.344 (5)
N9—Zn1 2.079 (4)
N10—Zn1 2.141 (5)
N1—Zn1—N9 160.34 (17)
N1—Zn1—N10 119.88 (17)
N9—Zn1—N10 77.86 (18)
N1—Zn1—N4 73.44 (15)
N9—Zn1—N4 114.63 (15)
N10—Zn1—N4 98.22 (16)
N1—Zn1—N2 75.83 (15)
N9—Zn1—N2 95.08 (15)
N10—Zn1—N2 95.62 (16)
N4—Zn1—N2 149.23 (15)
N1—Zn1—N6 91.45 (16)
N9—Zn1—N6 71.43 (17)
N10—Zn1—N6 148.63 (17)
N4—Zn1—N6 88.99 (16)
N2—Zn1—N6 93.32 (16)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Metal complexes containing derivatives of 1,10-phenanthroline as ligands pay an important role in modern coordination chemistry (Li, 2008 and Liu et al. 2008), whereas complexes dealing with 2-(1H-1,2,4-triazol-1-yl)-1,10-phenanthroline as ligand have not been published to our knowledge. Interest in this area resulted in us to synthesize a series of this kind of complexes, and herein the crystal structure of the title complex is reported.

Fig. 1 shows the title complex and the data of Table 1 reveal that ZnII ion is located in a distorted octahedral coordination environment. For each 2-(1H-1,2,4-triazol-1-yl-κN2)-1,10-phenanthroline-k2N,N' ligand, both 1,2,4-triazolyl ring and 1,10-phenanthroline ring are basically located in a plane within 0.0476 Å (for ligand dealing with atom N1) and 0.0485 Å (for ligand dealing with atom N6) with a maximun deviations of 0.1310 (51) Å and 0.1118 (59) Å for atom C4 and atom C16, respectively, and the dihedral angle between the two planes is 88.07 (5)°, and it means that two planes are nearly perpendicular each other. There is a weak π···π stacking interaction involving symmetry-related 1,2,4-triazolyl rings, with the relevant distances being Cg1···Cg1i = 3.802 (4) Å and Cg1···Cg1iperp = 3.413 Å [symmetry code: (i) -x, y, 1/2 - z; Cg1 is the centroids of C1C2N3-N5 ring].

Related literature top

For related structures, see: Li (2008); Liu et al. (2008).

Experimental top

5 ml Zn(ClO4).6H2O (0.0473 g, 0.127 mmol) H2O solution was added into 10 ml e thanol solution of 2-(1H-1,2,4-triazol-1-yl)-1,10-phenanthroline (0.0436 g, 0.176 mmol) and the mixed soluton was stirred for a few minutes. The yellow single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement top

All H atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å, Uiso = 1.2Ueq(C).

Structure description top

Metal complexes containing derivatives of 1,10-phenanthroline as ligands pay an important role in modern coordination chemistry (Li, 2008 and Liu et al. 2008), whereas complexes dealing with 2-(1H-1,2,4-triazol-1-yl)-1,10-phenanthroline as ligand have not been published to our knowledge. Interest in this area resulted in us to synthesize a series of this kind of complexes, and herein the crystal structure of the title complex is reported.

Fig. 1 shows the title complex and the data of Table 1 reveal that ZnII ion is located in a distorted octahedral coordination environment. For each 2-(1H-1,2,4-triazol-1-yl-κN2)-1,10-phenanthroline-k2N,N' ligand, both 1,2,4-triazolyl ring and 1,10-phenanthroline ring are basically located in a plane within 0.0476 Å (for ligand dealing with atom N1) and 0.0485 Å (for ligand dealing with atom N6) with a maximun deviations of 0.1310 (51) Å and 0.1118 (59) Å for atom C4 and atom C16, respectively, and the dihedral angle between the two planes is 88.07 (5)°, and it means that two planes are nearly perpendicular each other. There is a weak π···π stacking interaction involving symmetry-related 1,2,4-triazolyl rings, with the relevant distances being Cg1···Cg1i = 3.802 (4) Å and Cg1···Cg1iperp = 3.413 Å [symmetry code: (i) -x, y, 1/2 - z; Cg1 is the centroids of C1C2N3-N5 ring].

For related structures, see: Li (2008); Liu et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Structure of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Bis[2-(1H-1,2,4-triazol-1-yl-κN2)-1,10-phenanthroline- κ2N,N']zinc(II) bis(perchlorate) top
Crystal data top
[Zn(C14H9N5)2](ClO4)2F(000) = 3072
Mr = 758.79Dx = 1.680 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1862 reflections
a = 16.382 (2) Åθ = 2.6–21.0°
b = 26.278 (4) ŵ = 1.07 mm1
c = 15.701 (2) ÅT = 298 K
β = 117.399 (2)°Block, yellow
V = 6000.8 (14) Å30.20 × 0.15 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
6514 independent reflections
Radiation source: fine-focus sealed tube3811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
φ and ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2011
Tmin = 0.815, Tmax = 0.901k = 3330
17294 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0973P)2]
where P = (Fo2 + 2Fc2)/3
6514 reflections(Δ/σ)max < 0.001
442 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Zn(C14H9N5)2](ClO4)2V = 6000.8 (14) Å3
Mr = 758.79Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.382 (2) ŵ = 1.07 mm1
b = 26.278 (4) ÅT = 298 K
c = 15.701 (2) Å0.20 × 0.15 × 0.10 mm
β = 117.399 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6514 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3811 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.901Rint = 0.068
17294 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.02Δρmax = 0.82 e Å3
6514 reflectionsΔρmin = 0.34 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0631 (4)0.1459 (2)0.1825 (4)0.0624 (17)
H10.05740.18110.18410.075*
C20.0273 (4)0.0696 (2)0.1503 (4)0.0549 (15)
H20.00470.03940.12670.066*
C30.1886 (3)0.03571 (18)0.2340 (3)0.0368 (12)
C40.1711 (4)0.0158 (2)0.2174 (4)0.0501 (14)
H40.11140.02850.18640.060*
C50.2452 (4)0.0471 (2)0.2484 (4)0.0569 (16)
H50.23630.08200.23890.068*
C60.3349 (4)0.02772 (19)0.2944 (4)0.0478 (14)
C70.3436 (3)0.02411 (18)0.3104 (3)0.0374 (12)
C80.4324 (3)0.04752 (19)0.3634 (4)0.0435 (13)
C90.4165 (5)0.0573 (2)0.3268 (5)0.0703 (19)
H90.41190.09220.31560.084*
C100.4992 (4)0.0360 (2)0.3727 (5)0.0675 (18)
H100.55100.05640.39110.081*
C110.5112 (4)0.0167 (2)0.3945 (4)0.0541 (15)
C120.5163 (4)0.1190 (2)0.4324 (5)0.0604 (16)
H120.51920.15360.44600.072*
C130.5980 (4)0.0915 (2)0.4680 (5)0.0706 (19)
H130.65380.10770.50520.085*
C140.5962 (4)0.0415 (3)0.4483 (5)0.0690 (19)
H140.65090.02340.47010.083*
C150.2538 (4)0.0882 (2)0.5021 (5)0.0575 (16)
H150.22600.05690.47800.069*
C160.3113 (5)0.1493 (3)0.5964 (5)0.0727 (19)
H160.33260.17090.64920.087*
C170.3369 (3)0.2034 (2)0.4786 (4)0.0453 (14)
C180.3637 (4)0.2490 (2)0.5325 (4)0.0580 (17)
H180.36590.25170.59250.070*
C190.3842 (3)0.2848 (2)0.4018 (5)0.0556 (16)
C200.3554 (3)0.23732 (18)0.3545 (4)0.0448 (14)
C210.3478 (3)0.22907 (19)0.2619 (4)0.0465 (14)
C220.4075 (4)0.3237 (2)0.3554 (6)0.075 (2)
H220.42670.35510.38550.090*
C230.4027 (4)0.3165 (2)0.2694 (6)0.076 (2)
H230.42010.34280.24150.091*
C240.3714 (4)0.2690 (2)0.2177 (5)0.0617 (18)
C250.3633 (5)0.2585 (3)0.1270 (6)0.078 (2)
H250.37950.28300.09490.094*
C260.3317 (5)0.2124 (3)0.0855 (5)0.0717 (19)
H260.32650.20540.02510.086*
C270.3073 (4)0.1755 (2)0.1339 (4)0.0592 (16)
H270.28330.14470.10360.071*
C320.3858 (4)0.2883 (2)0.4923 (5)0.067 (2)
H320.40290.31900.52550.081*
Cl10.12715 (11)0.06126 (6)0.95141 (13)0.0646 (5)
Cl20.61091 (10)0.20923 (5)0.65565 (12)0.0611 (4)
N10.2708 (3)0.05547 (14)0.2790 (3)0.0372 (10)
N20.4342 (3)0.09805 (15)0.3799 (3)0.0449 (11)
N30.1183 (3)0.07318 (15)0.2035 (3)0.0423 (10)
N40.1426 (3)0.12261 (15)0.2249 (3)0.0486 (12)
N50.0102 (3)0.1146 (2)0.1362 (4)0.0689 (15)
N60.2747 (3)0.12010 (17)0.4512 (3)0.0482 (11)
N70.3125 (3)0.16001 (17)0.5128 (3)0.0480 (11)
N80.2756 (4)0.1038 (2)0.5924 (4)0.0813 (17)
N90.3323 (3)0.19850 (14)0.3942 (3)0.0419 (11)
N100.3171 (3)0.18306 (16)0.2205 (3)0.0482 (11)
O10.5926 (4)0.2410 (2)0.5782 (4)0.1038 (18)
O20.5324 (3)0.18132 (17)0.6394 (4)0.0981 (18)
O30.6377 (4)0.23970 (19)0.7393 (4)0.110 (2)
O40.6827 (3)0.17485 (18)0.6715 (5)0.111 (2)
O50.1527 (6)0.1035 (3)0.9202 (6)0.179 (3)
O60.1939 (5)0.0568 (3)1.0476 (5)0.164 (3)
O70.1428 (6)0.0195 (3)0.9078 (6)0.171 (3)
O80.0439 (5)0.0590 (3)0.9451 (8)0.212 (5)
Zn10.29332 (4)0.13209 (2)0.31319 (4)0.0419 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (4)0.046 (3)0.075 (4)0.008 (3)0.007 (3)0.007 (3)
C20.036 (3)0.052 (4)0.056 (4)0.010 (3)0.004 (3)0.002 (3)
C30.032 (3)0.038 (3)0.036 (3)0.003 (2)0.012 (2)0.007 (2)
C40.051 (4)0.039 (3)0.056 (4)0.009 (3)0.021 (3)0.007 (3)
C50.072 (4)0.032 (3)0.064 (4)0.008 (3)0.029 (3)0.014 (3)
C60.058 (4)0.031 (3)0.053 (3)0.003 (2)0.025 (3)0.002 (2)
C70.043 (3)0.033 (3)0.033 (3)0.005 (2)0.016 (2)0.002 (2)
C80.044 (3)0.036 (3)0.049 (3)0.006 (2)0.021 (3)0.002 (2)
C90.079 (5)0.041 (4)0.089 (5)0.016 (3)0.036 (4)0.005 (3)
C100.061 (4)0.049 (4)0.094 (5)0.021 (3)0.037 (4)0.011 (4)
C110.041 (3)0.050 (3)0.071 (4)0.012 (3)0.026 (3)0.007 (3)
C120.046 (4)0.046 (3)0.080 (4)0.006 (3)0.021 (3)0.003 (3)
C130.034 (3)0.065 (4)0.098 (5)0.006 (3)0.017 (3)0.005 (4)
C140.031 (3)0.075 (5)0.093 (5)0.012 (3)0.023 (3)0.016 (4)
C150.045 (4)0.058 (4)0.063 (4)0.009 (3)0.020 (3)0.013 (3)
C160.086 (5)0.078 (5)0.051 (4)0.014 (4)0.029 (4)0.001 (4)
C170.030 (3)0.041 (3)0.051 (4)0.009 (2)0.007 (2)0.006 (3)
C180.047 (4)0.043 (3)0.061 (4)0.011 (3)0.004 (3)0.009 (3)
C190.029 (3)0.034 (3)0.079 (5)0.000 (2)0.003 (3)0.002 (3)
C200.026 (3)0.033 (3)0.064 (4)0.000 (2)0.011 (2)0.003 (3)
C210.031 (3)0.032 (3)0.065 (4)0.004 (2)0.013 (3)0.013 (3)
C220.055 (4)0.038 (4)0.103 (6)0.005 (3)0.012 (4)0.001 (4)
C230.046 (4)0.044 (4)0.117 (7)0.004 (3)0.021 (4)0.019 (4)
C240.039 (3)0.054 (4)0.083 (5)0.004 (3)0.020 (3)0.024 (3)
C250.063 (5)0.090 (6)0.086 (6)0.015 (4)0.037 (4)0.038 (5)
C260.072 (5)0.078 (5)0.070 (5)0.011 (4)0.037 (4)0.025 (4)
C270.059 (4)0.056 (4)0.054 (4)0.002 (3)0.019 (3)0.004 (3)
C320.042 (4)0.048 (4)0.078 (5)0.007 (3)0.002 (3)0.020 (3)
Cl10.0555 (10)0.0612 (10)0.0722 (11)0.0084 (7)0.0251 (8)0.0016 (8)
Cl20.0475 (9)0.0434 (8)0.0758 (11)0.0065 (6)0.0140 (7)0.0022 (8)
N10.035 (2)0.031 (2)0.040 (2)0.0009 (17)0.0125 (18)0.0021 (18)
N20.035 (2)0.036 (2)0.055 (3)0.0022 (18)0.013 (2)0.001 (2)
N30.039 (3)0.033 (2)0.044 (3)0.0050 (18)0.010 (2)0.0052 (19)
N40.037 (3)0.035 (2)0.058 (3)0.0018 (18)0.008 (2)0.005 (2)
N50.035 (3)0.059 (3)0.086 (4)0.002 (2)0.005 (3)0.008 (3)
N60.044 (3)0.049 (3)0.046 (3)0.002 (2)0.015 (2)0.003 (2)
N70.041 (3)0.051 (3)0.046 (3)0.008 (2)0.015 (2)0.000 (2)
N80.097 (5)0.081 (5)0.074 (4)0.010 (3)0.046 (4)0.014 (4)
N90.031 (2)0.030 (2)0.053 (3)0.0021 (17)0.009 (2)0.003 (2)
N100.044 (3)0.045 (3)0.051 (3)0.002 (2)0.018 (2)0.007 (2)
O10.129 (5)0.108 (4)0.094 (4)0.031 (3)0.069 (4)0.030 (3)
O20.046 (3)0.064 (3)0.155 (5)0.001 (2)0.022 (3)0.009 (3)
O30.164 (6)0.064 (3)0.081 (4)0.001 (3)0.037 (4)0.009 (3)
O40.050 (3)0.066 (3)0.194 (6)0.021 (2)0.036 (3)0.013 (3)
O50.220 (9)0.107 (6)0.183 (7)0.039 (5)0.071 (6)0.051 (5)
O60.137 (6)0.225 (9)0.109 (5)0.035 (6)0.038 (5)0.010 (5)
O70.259 (10)0.101 (5)0.202 (8)0.009 (6)0.147 (7)0.021 (5)
O80.074 (5)0.219 (9)0.332 (12)0.024 (5)0.084 (6)0.080 (8)
Zn10.0370 (4)0.0292 (3)0.0523 (4)0.0038 (2)0.0143 (3)0.0033 (3)
Geometric parameters (Å, º) top
C1—N41.310 (7)C17—C181.417 (7)
C1—N51.359 (7)C18—C321.342 (9)
C1—H10.9300C18—H180.9300
C2—N51.302 (7)C19—C221.405 (9)
C2—N31.335 (6)C19—C321.413 (9)
C2—H20.9300C19—C201.418 (7)
C3—N11.306 (6)C20—N91.337 (6)
C3—C41.384 (7)C20—C211.416 (8)
C3—N31.420 (6)C21—N101.355 (6)
C4—C51.357 (7)C21—C241.408 (7)
C4—H40.9300C22—C231.330 (10)
C5—C61.401 (7)C22—H220.9300
C5—H50.9300C23—C241.448 (9)
C6—C71.381 (7)C23—H230.9300
C6—C91.423 (8)C24—C251.395 (10)
C7—N11.343 (6)C25—C261.360 (9)
C7—C81.440 (7)C25—H250.9300
C8—N21.351 (6)C26—C271.399 (8)
C8—C111.407 (7)C26—H260.9300
C9—C101.331 (8)C27—N101.309 (7)
C9—H90.9300C27—H270.9300
C10—C111.417 (8)C32—H320.9300
C10—H100.9300Cl1—O81.323 (7)
C11—C141.413 (8)Cl1—O51.356 (6)
C12—N21.331 (7)Cl1—O71.379 (7)
C12—C131.391 (8)Cl1—O61.403 (7)
C12—H120.9300Cl2—O11.390 (5)
C13—C141.347 (8)Cl2—O21.398 (5)
C13—H130.9300Cl2—O41.411 (4)
C14—H140.9300Cl2—O31.424 (5)
C15—N61.308 (7)N1—Zn12.072 (4)
C15—N81.357 (8)N2—Zn12.235 (4)
C15—H150.9300N3—N41.355 (5)
C16—N81.321 (9)N4—Zn12.220 (4)
C16—N71.350 (7)N6—N71.367 (6)
C16—H160.9300N6—Zn12.344 (5)
C17—N91.299 (7)N9—Zn12.079 (4)
C17—N71.395 (7)N10—Zn12.141 (5)
N4—C1—N5114.6 (5)C25—C24—C21115.9 (6)
N4—C1—H1122.7C25—C24—C23125.8 (7)
N5—C1—H1122.7C21—C24—C23118.2 (7)
N5—C2—N3110.3 (5)C26—C25—C24120.1 (7)
N5—C2—H2124.8C26—C25—H25119.9
N3—C2—H2124.8C24—C25—H25119.9
N1—C3—C4124.3 (5)C25—C26—C27119.8 (7)
N1—C3—N3112.4 (4)C25—C26—H26120.1
C4—C3—N3123.4 (4)C27—C26—H26120.1
C5—C4—C3116.8 (5)N10—C27—C26122.0 (6)
C5—C4—H4121.6N10—C27—H27119.0
C3—C4—H4121.6C26—C27—H27119.0
C4—C5—C6121.2 (5)C18—C32—C19122.6 (6)
C4—C5—H5119.4C18—C32—H32118.7
C6—C5—H5119.4C19—C32—H32118.7
C7—C6—C5116.6 (5)O8—Cl1—O5119.2 (6)
C7—C6—C9118.2 (5)O8—Cl1—O7110.4 (5)
C5—C6—C9125.2 (5)O5—Cl1—O7108.3 (5)
N1—C7—C6122.6 (5)O8—Cl1—O6110.0 (6)
N1—C7—C8116.2 (4)O5—Cl1—O6103.9 (5)
C6—C7—C8121.3 (5)O7—Cl1—O6103.7 (5)
N2—C8—C11124.3 (5)O1—Cl2—O2110.2 (3)
N2—C8—C7117.2 (4)O1—Cl2—O4111.5 (4)
C11—C8—C7118.4 (5)O2—Cl2—O4108.6 (3)
C10—C9—C6121.2 (6)O1—Cl2—O3108.6 (3)
C10—C9—H9119.4O2—Cl2—O3109.3 (4)
C6—C9—H9119.4O4—Cl2—O3108.6 (4)
C9—C10—C11122.4 (6)C3—N1—C7118.4 (4)
C9—C10—H10118.8C3—N1—Zn1122.9 (3)
C11—C10—H10118.8C7—N1—Zn1118.6 (3)
C8—C11—C14115.8 (5)C12—N2—C8116.8 (5)
C8—C11—C10118.4 (5)C12—N2—Zn1131.0 (4)
C14—C11—C10125.8 (5)C8—N2—Zn1112.2 (3)
N2—C12—C13123.1 (6)C2—N3—N4109.8 (4)
N2—C12—H12118.4C2—N3—C3131.4 (4)
C13—C12—H12118.4N4—N3—C3118.7 (4)
C14—C13—C12119.9 (6)C1—N4—N3102.2 (4)
C14—C13—H13120.1C1—N4—Zn1145.6 (4)
C12—C13—H13120.1N3—N4—Zn1112.2 (3)
C13—C14—C11120.0 (5)C2—N5—C1103.1 (5)
C13—C14—H14120.0C15—N6—N7102.7 (5)
C11—C14—H14120.0C15—N6—Zn1146.4 (4)
N6—C15—N8115.3 (6)N7—N6—Zn1110.1 (3)
N6—C15—H15122.3C16—N7—N6109.0 (5)
N8—C15—H15122.3C16—N7—C17132.8 (5)
N8—C16—N7110.2 (6)N6—N7—C17118.0 (4)
N8—C16—H16124.9C16—N8—C15102.8 (6)
N7—C16—H16124.9C17—N9—C20120.3 (5)
N9—C17—N7114.9 (5)C17—N9—Zn1124.3 (4)
N9—C17—C18123.3 (6)C20—N9—Zn1115.4 (4)
N7—C17—C18121.8 (6)C27—N10—C21118.4 (5)
C32—C18—C17116.5 (6)C27—N10—Zn1129.6 (4)
C32—C18—H18121.7C21—N10—Zn1112.0 (4)
C17—C18—H18121.7N1—Zn1—N9160.34 (17)
C22—C19—C32126.3 (6)N1—Zn1—N10119.88 (17)
C22—C19—C20118.2 (6)N9—Zn1—N1077.86 (18)
C32—C19—C20115.6 (6)N1—Zn1—N473.44 (15)
N9—C20—C21116.8 (5)N9—Zn1—N4114.63 (15)
N9—C20—C19121.6 (6)N10—Zn1—N498.22 (16)
C21—C20—C19121.6 (5)N1—Zn1—N275.83 (15)
N10—C21—C24123.6 (6)N9—Zn1—N295.08 (15)
N10—C21—C20117.9 (5)N10—Zn1—N295.62 (16)
C24—C21—C20118.5 (5)N4—Zn1—N2149.23 (15)
C23—C22—C19121.3 (6)N1—Zn1—N691.45 (16)
C23—C22—H22119.3N9—Zn1—N671.43 (17)
C19—C22—H22119.3N10—Zn1—N6148.63 (17)
C22—C23—C24122.1 (7)N4—Zn1—N688.99 (16)
C22—C23—H23118.9N2—Zn1—N693.32 (16)
C24—C23—H23118.9
N1—C3—C4—C51.6 (8)C15—N6—N7—C160.2 (6)
N3—C3—C4—C5178.2 (5)Zn1—N6—N7—C16172.4 (4)
C3—C4—C5—C60.4 (8)C15—N6—N7—C17175.4 (4)
C4—C5—C6—C72.9 (8)Zn1—N6—N7—C1712.4 (5)
C4—C5—C6—C9178.1 (6)N9—C17—N7—C16177.3 (5)
C5—C6—C7—N13.8 (8)C18—C17—N7—C163.2 (9)
C9—C6—C7—N1177.1 (5)N9—C17—N7—N68.8 (6)
C5—C6—C7—C8175.4 (5)C18—C17—N7—N6170.6 (4)
C9—C6—C7—C83.7 (8)N7—C16—N8—C151.1 (7)
N1—C7—C8—N22.7 (7)N6—C15—N8—C161.0 (7)
C6—C7—C8—N2176.6 (5)N7—C17—N9—C20179.1 (4)
N1—C7—C8—C11177.4 (5)C18—C17—N9—C201.5 (7)
C6—C7—C8—C113.3 (8)N7—C17—N9—Zn10.6 (6)
C7—C6—C9—C101.1 (9)C18—C17—N9—Zn1180.0 (4)
C5—C6—C9—C10177.9 (6)C21—C20—N9—C17179.5 (4)
C6—C9—C10—C111.8 (11)C19—C20—N9—C170.8 (7)
N2—C8—C11—C141.5 (9)C21—C20—N9—Zn11.9 (6)
C7—C8—C11—C14178.3 (5)C19—C20—N9—Zn1179.5 (4)
N2—C8—C11—C10179.5 (6)C26—C27—N10—C213.2 (8)
C7—C8—C11—C100.3 (8)C26—C27—N10—Zn1175.8 (4)
C9—C10—C11—C82.2 (10)C24—C21—N10—C271.2 (7)
C9—C10—C11—C14175.6 (6)C20—C21—N10—C27178.1 (5)
N2—C12—C13—C141.0 (11)C24—C21—N10—Zn1178.0 (4)
C12—C13—C14—C112.2 (11)C20—C21—N10—Zn12.7 (5)
C8—C11—C14—C131.0 (9)C3—N1—Zn1—N9111.5 (5)
C10—C11—C14—C13176.8 (7)C7—N1—Zn1—N963.6 (6)
N9—C17—C18—C320.6 (7)C3—N1—Zn1—N1095.9 (4)
N7—C17—C18—C32180.0 (5)C7—N1—Zn1—N1089.0 (4)
C22—C19—C20—N9179.8 (5)C3—N1—Zn1—N45.9 (4)
C32—C19—C20—N90.6 (7)C7—N1—Zn1—N4179.0 (4)
C22—C19—C20—C211.6 (7)C3—N1—Zn1—N2175.7 (4)
C32—C19—C20—C21178.0 (5)C7—N1—Zn1—N20.6 (4)
N9—C20—C21—N100.7 (7)C3—N1—Zn1—N682.7 (4)
C19—C20—C21—N10178.0 (4)C7—N1—Zn1—N692.4 (4)
N9—C20—C21—C24180.0 (5)C17—N9—Zn1—N125.2 (7)
C19—C20—C21—C241.3 (7)C20—N9—Zn1—N1153.4 (4)
C32—C19—C22—C23179.4 (6)C17—N9—Zn1—N10178.9 (4)
C20—C19—C22—C230.2 (9)C20—N9—Zn1—N102.5 (3)
C19—C22—C23—C241.4 (10)C17—N9—Zn1—N485.3 (4)
N10—C21—C24—C251.3 (8)C20—N9—Zn1—N496.1 (4)
C20—C21—C24—C25179.4 (5)C17—N9—Zn1—N286.4 (4)
N10—C21—C24—C23179.6 (5)C20—N9—Zn1—N292.2 (3)
C20—C21—C24—C230.3 (8)C17—N9—Zn1—N65.4 (4)
C22—C23—C24—C25179.3 (6)C20—N9—Zn1—N6176.0 (4)
C22—C23—C24—C211.7 (9)C27—N10—Zn1—N110.9 (5)
C21—C24—C25—C261.8 (9)C21—N10—Zn1—N1168.1 (3)
C23—C24—C25—C26179.2 (6)C27—N10—Zn1—N9178.2 (5)
C24—C25—C26—C270.1 (10)C21—N10—Zn1—N92.7 (3)
C25—C26—C27—N102.7 (10)C27—N10—Zn1—N464.6 (5)
C17—C18—C32—C190.9 (8)C21—N10—Zn1—N4116.3 (3)
C22—C19—C32—C18179.0 (6)C27—N10—Zn1—N287.8 (5)
C20—C19—C32—C181.4 (8)C21—N10—Zn1—N291.3 (3)
C4—C3—N1—C70.9 (8)C27—N10—Zn1—N6166.3 (4)
N3—C3—N1—C7179.0 (4)C21—N10—Zn1—N614.6 (5)
C4—C3—N1—Zn1174.2 (4)C1—N4—Zn1—N1175.7 (8)
N3—C3—N1—Zn15.9 (6)N3—N4—Zn1—N14.4 (3)
C6—C7—N1—C32.0 (7)C1—N4—Zn1—N923.5 (8)
C8—C7—N1—C3177.3 (4)N3—N4—Zn1—N9156.4 (3)
C6—C7—N1—Zn1177.3 (4)C1—N4—Zn1—N1056.9 (8)
C8—C7—N1—Zn11.9 (6)N3—N4—Zn1—N10123.2 (4)
C13—C12—N2—C81.4 (9)C1—N4—Zn1—N2172.7 (7)
C13—C12—N2—Zn1179.5 (5)N3—N4—Zn1—N27.4 (6)
C11—C8—N2—C122.6 (8)C1—N4—Zn1—N692.5 (8)
C7—C8—N2—C12177.2 (5)N3—N4—Zn1—N687.4 (4)
C11—C8—N2—Zn1178.1 (4)C12—N2—Zn1—N1178.3 (6)
C7—C8—N2—Zn12.1 (6)C8—N2—Zn1—N10.8 (4)
N5—C2—N3—N40.7 (7)C12—N2—Zn1—N916.0 (5)
N5—C2—N3—C3176.8 (5)C8—N2—Zn1—N9163.1 (4)
N1—C3—N3—C2174.5 (5)C12—N2—Zn1—N1062.2 (5)
C4—C3—N3—C25.3 (9)C8—N2—Zn1—N10118.6 (4)
N1—C3—N3—N41.2 (6)C12—N2—Zn1—N4178.7 (5)
C4—C3—N3—N4178.9 (5)C8—N2—Zn1—N42.1 (6)
N5—C1—N4—N30.4 (7)C12—N2—Zn1—N687.7 (5)
N5—C1—N4—Zn1179.5 (5)C8—N2—Zn1—N691.5 (4)
C2—N3—N4—C10.2 (6)C15—N6—Zn1—N15.0 (7)
C3—N3—N4—C1176.9 (5)N7—N6—Zn1—N1161.1 (3)
C2—N3—N4—Zn1179.9 (4)C15—N6—Zn1—N9175.1 (7)
C3—N3—N4—Zn13.2 (6)N7—N6—Zn1—N99.0 (3)
N3—C2—N5—C10.9 (7)C15—N6—Zn1—N10172.6 (6)
N4—C1—N5—C20.8 (8)N7—N6—Zn1—N1021.2 (5)
N8—C15—N6—N70.5 (6)C15—N6—Zn1—N468.4 (7)
N8—C15—N6—Zn1166.1 (5)N7—N6—Zn1—N4125.5 (3)
N8—C16—N7—N60.9 (7)C15—N6—Zn1—N280.9 (7)
N8—C16—N7—C17175.1 (5)N7—N6—Zn1—N285.2 (3)

Experimental details

Crystal data
Chemical formula[Zn(C14H9N5)2](ClO4)2
Mr758.79
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)16.382 (2), 26.278 (4), 15.701 (2)
β (°) 117.399 (2)
V3)6000.8 (14)
Z8
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.815, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
17294, 6514, 3811
Rint0.068
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.198, 1.02
No. of reflections6514
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.34

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Selected geometric parameters (Å, º) top
N1—Zn12.072 (4)N6—Zn12.344 (5)
N2—Zn12.235 (4)N9—Zn12.079 (4)
N4—Zn12.220 (4)N10—Zn12.141 (5)
N1—Zn1—N9160.34 (17)N10—Zn1—N295.62 (16)
N1—Zn1—N10119.88 (17)N4—Zn1—N2149.23 (15)
N9—Zn1—N1077.86 (18)N1—Zn1—N691.45 (16)
N1—Zn1—N473.44 (15)N9—Zn1—N671.43 (17)
N9—Zn1—N4114.63 (15)N10—Zn1—N6148.63 (17)
N10—Zn1—N498.22 (16)N4—Zn1—N688.99 (16)
N1—Zn1—N275.83 (15)N2—Zn1—N693.32 (16)
N9—Zn1—N295.08 (15)
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 20971080).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. M. (2008). Acta Cryst. E64, m982.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds