organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­phen­yl)-1-[(E)-1-(4-chloro­phen­yl)-2-(4-methyl­phenyl­sulfan­yl)ethen­yl]-4-(4-methyl­phenyl­sulfan­yl)-1H-pyrazole

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 4 October 2009; accepted 20 October 2009; online 28 October 2009)

In the title compound, C31H24Cl2N2S2, the pyrazole ring adopts planar conformation with a maximum deviation of 0.002 (2) Å. The chloro­phenyl rings are twisted out of the plane of the pyrazole ring by 75.1 (1) and 39.5 (1)°. The crystal packing is controlled by weak intermolecular C—H⋯π interactions.

Related literature

For the pharmacological and medicinal properties of pyrazole derivatives, see: Baraldi et al. (1998[Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.]); Bruno et al. (1990[Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147-66.]); Cottineau et al. (2002[Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105-2108.]); Londershausen (1996[Londershausen, M. (1996). Pestic. Sci. 48, 269-274.]); Chen & Li (1998[Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.]); Mishra et al. (1998[Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199-200.]); Smith et al. (2001[Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107-119.]). For sp2 hybridization, see: Beddoes et al., 1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For bond-length data, see: Jin et al. (2004[Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642-o643.]).

[Scheme 1]

Experimental

Crystal data
  • C31H24Cl2N2S2

  • Mr = 559.54

  • Monoclinic, P 21 /n

  • a = 9.7515 (2) Å

  • b = 10.2097 (3) Å

  • c = 27.6705 (6) Å

  • β = 96.402 (1)°

  • V = 2737.69 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.883, Tmax = 0.921

  • 38656 measured reflections

  • 9852 independent reflections

  • 5773 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.160

  • S = 1.03

  • 9852 reflections

  • 336 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
C—H⋯π interactions (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33CCg3i 0.96 2.90 3.851 (3) 171
C9—H9⋯Cg5ii 0.93 3.03 3.839 (2) 147
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+2, -y+1, -z. Cg3 and Cg5 are the centroids of the C14–C19 and C26–C31 rings, respectively.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.])); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazole derivatives possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen et al., 1996) properties. Some pyrazole derivatives are successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al., 1998) and anti-inflammatory (Smith et al., 2001) activities.

The ORTEP plot of the molecule is shown in Fig. 1. The pyrazole ring adopts a planar conformation. The sum of the bond angles at N2 of the pyrazole ring (360.0°) is in accordance with sp2 hybridization (Beddoes et al., 1986). The C—N bond lengths in the pyrazole ring are 1.352 (2) and 1.328 (2) Å, which are shorter than single bond length of 1.443 Å, but longer than a double bond length of 1.269 Å (Jin et al., 2004), indicating electron delocalization. The chlorophenyl rings are twisted from the pyrazole ring at angles of 75.1 (1)° and 39.5 (1)°, respectively. The crystal packing is stabilized by weak C—H···π type of intermolecular interactions in addition to van der Waals forces.

Related literature top

For the pharmacological and medicinal properties of pyrazole derivatives, see: Baraldi et al. (1998); Bruno et al. (1990); Cottineau et al. (2002); Londershausen (1996); Chen & Li (1998); Mishra et al. (1998); Smith et al. (2001). For sp2 hybridization, see: Beddoes et al., 1986). For bond-length data, see: Jin et al. (2004). Cg3 and Cg5 are the centroids of the C14–C19 and C26–C31 rings, respectively.

Experimental top

To a mixture of 1-(4-Chlorophenyl) -2-[(4-methylphenyl)sulfanyl]-1-ethanone N-(Z)-1-(4-chlorophenyl) -2-[(4-methylphenyl)sulfanyl]ethylidenehydrazone (0.003 mole) and 3 ml of dimethyl formamide kept in ice bath at 0°C, phosphorous oxycholride (0.024 mole) was added dropwise for 5–10 minutes. The reaction mixture was then irradiated under microwaves for 30 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried over anhydrous sodium sulfate. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate mixture as eluent. This isolated compound was recrystallized in dichloromethane to obtain 3-(4-Chlorophenyl)-1-(E)-1-(4-chlorophenyl)-2-[(4-methylphenyl) sulfanyl]ethenyl-4-[(4-methylphenyl)sulfanyl]-1H-pyrazole.

Refinement top

All H atoms were positioned geometrically (C—H=0.93–0.96 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms. The methyl groups were allowed to rotate but not to tip.

Structure description top

Pyrazole derivatives possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen et al., 1996) properties. Some pyrazole derivatives are successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al., 1998) and anti-inflammatory (Smith et al., 2001) activities.

The ORTEP plot of the molecule is shown in Fig. 1. The pyrazole ring adopts a planar conformation. The sum of the bond angles at N2 of the pyrazole ring (360.0°) is in accordance with sp2 hybridization (Beddoes et al., 1986). The C—N bond lengths in the pyrazole ring are 1.352 (2) and 1.328 (2) Å, which are shorter than single bond length of 1.443 Å, but longer than a double bond length of 1.269 Å (Jin et al., 2004), indicating electron delocalization. The chlorophenyl rings are twisted from the pyrazole ring at angles of 75.1 (1)° and 39.5 (1)°, respectively. The crystal packing is stabilized by weak C—H···π type of intermolecular interactions in addition to van der Waals forces.

For the pharmacological and medicinal properties of pyrazole derivatives, see: Baraldi et al. (1998); Bruno et al. (1990); Cottineau et al. (2002); Londershausen (1996); Chen & Li (1998); Mishra et al. (1998); Smith et al. (2001). For sp2 hybridization, see: Beddoes et al., 1986). For bond-length data, see: Jin et al. (2004). Cg3 and Cg5 are the centroids of the C14–C19 and C26–C31 rings, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, (1997)); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the displacement ellipsoids are drawn at 50% probability level. H atoms have been omitted for clarity.
3-(4-Chlorophenyl)-1-[(E)-1-(4-chlorophenyl)-2-(4- methylphenylsulfanyl)ethenyl]-4-(4-methylphenylsulfanyl)-1H-pyrazole top
Crystal data top
C31H24Cl2N2S2F(000) = 1160
Mr = 559.54Dx = 1.358 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2546 reflections
a = 9.7515 (2) Åθ = 1.5–32.5°
b = 10.2097 (3) ŵ = 0.41 mm1
c = 27.6705 (6) ÅT = 293 K
β = 96.402 (1)°Block, colourless
V = 2737.69 (11) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
9852 independent reflections
Radiation source: fine-focus sealed tube5773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scansθmax = 32.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1414
Tmin = 0.883, Tmax = 0.921k = 1515
38656 measured reflectionsl = 4139
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.5516P]
where P = (Fo2 + 2Fc2)/3
9852 reflections(Δ/σ)max = 0.003
336 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C31H24Cl2N2S2V = 2737.69 (11) Å3
Mr = 559.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7515 (2) ŵ = 0.41 mm1
b = 10.2097 (3) ÅT = 293 K
c = 27.6705 (6) Å0.30 × 0.25 × 0.20 mm
β = 96.402 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
9852 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
5773 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.921Rint = 0.032
38656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.03Δρmax = 0.54 e Å3
9852 reflectionsΔρmin = 0.33 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08583 (6)0.11974 (5)0.63584 (2)0.05549 (15)
S20.25311 (5)0.35982 (5)0.42760 (2)0.05549 (15)
Cl10.13889 (7)0.45353 (6)0.68961 (2)0.07471 (19)
Cl20.48797 (8)0.21313 (9)0.30187 (2)0.0905 (2)
N10.23543 (16)0.02119 (14)0.49711 (5)0.0415 (3)
N20.18350 (16)0.10815 (14)0.52737 (5)0.0421 (3)
C30.1835 (2)0.23137 (18)0.50948 (7)0.0472 (4)
H30.15310.30620.52420.057*
C40.23608 (19)0.22595 (18)0.46595 (7)0.0446 (4)
C50.26756 (18)0.09181 (17)0.45965 (6)0.0398 (4)
C60.13934 (19)0.06576 (17)0.57196 (6)0.0410 (4)
C70.1621 (2)0.05738 (19)0.58678 (7)0.0485 (4)
H70.21960.11070.57070.058*
C80.2206 (2)0.21076 (18)0.66790 (6)0.0461 (4)
C90.3584 (2)0.1814 (2)0.66695 (8)0.0583 (5)
H90.38450.11160.64840.070*
C100.4568 (3)0.2562 (2)0.69371 (8)0.0653 (6)
H100.54960.23700.69240.078*
C110.4224 (3)0.3585 (2)0.72236 (7)0.0606 (5)
C120.2849 (3)0.3848 (2)0.72369 (8)0.0614 (6)
H120.25920.45240.74330.074*
C130.1842 (2)0.3134 (2)0.69661 (7)0.0566 (5)
H130.09170.33400.69760.068*
C140.07032 (18)0.16654 (17)0.59941 (6)0.0389 (3)
C150.1380 (2)0.2157 (2)0.64224 (7)0.0495 (4)
H150.22710.18770.65270.059*
C160.0749 (2)0.3054 (2)0.66948 (7)0.0523 (5)
H160.12120.33880.69800.063*
C170.0571 (2)0.34490 (18)0.65410 (6)0.0459 (4)
C180.1264 (2)0.29888 (19)0.61145 (7)0.0478 (4)
H180.21550.32730.60120.057*
C190.06171 (19)0.20999 (18)0.58410 (6)0.0443 (4)
H190.10740.17890.55510.053*
C200.4342 (2)0.38614 (17)0.43419 (7)0.0441 (4)
C210.4884 (2)0.4601 (2)0.39927 (7)0.0521 (5)
H210.43010.49670.37400.063*
C220.6289 (2)0.4800 (2)0.40176 (8)0.0549 (5)
H220.66390.53050.37800.066*
C230.7187 (2)0.42680 (19)0.43848 (8)0.0524 (5)
C240.6620 (3)0.3574 (2)0.47388 (9)0.0679 (6)
H240.71990.32270.49970.081*
C250.5222 (2)0.3377 (2)0.47219 (8)0.0649 (6)
H250.48690.29140.49700.078*
C260.32826 (18)0.02448 (17)0.42028 (6)0.0400 (4)
C270.2903 (2)0.0553 (2)0.37175 (6)0.0510 (5)
H270.23100.12520.36360.061*
C280.3405 (2)0.0176 (2)0.33562 (7)0.0576 (5)
H280.31470.00280.30310.069*
C290.4282 (2)0.1200 (2)0.34765 (7)0.0553 (5)
C300.4714 (2)0.1501 (2)0.39539 (8)0.0567 (5)
H300.53360.21780.40320.068*
C310.4201 (2)0.07719 (19)0.43141 (7)0.0490 (4)
H310.44800.09690.46380.059*
C320.5335 (3)0.4378 (3)0.75125 (10)0.0887 (9)
H32A0.58500.48540.72940.133*
H32B0.49180.49830.77180.133*
H32C0.59420.38020.77090.133*
C330.8720 (2)0.4392 (3)0.43899 (11)0.0728 (7)
H33A0.90790.36170.42530.109*
H33B0.91360.44970.47190.109*
H33C0.89290.51400.42010.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0571 (3)0.0534 (3)0.0597 (3)0.0077 (2)0.0230 (2)0.0147 (2)
S20.0492 (3)0.0490 (3)0.0690 (3)0.0058 (2)0.0096 (2)0.0254 (2)
Cl10.0911 (5)0.0722 (4)0.0659 (3)0.0193 (3)0.0308 (3)0.0139 (3)
Cl20.0853 (5)0.1220 (6)0.0684 (4)0.0011 (4)0.0276 (3)0.0391 (4)
N10.0492 (8)0.0357 (7)0.0409 (7)0.0026 (6)0.0111 (6)0.0010 (6)
N20.0519 (9)0.0344 (7)0.0416 (7)0.0020 (6)0.0125 (6)0.0017 (6)
C30.0532 (11)0.0349 (9)0.0553 (10)0.0047 (8)0.0140 (8)0.0039 (7)
C40.0460 (10)0.0392 (9)0.0498 (9)0.0025 (8)0.0112 (8)0.0094 (7)
C50.0398 (9)0.0391 (9)0.0411 (8)0.0002 (7)0.0066 (7)0.0051 (7)
C60.0451 (9)0.0391 (9)0.0402 (8)0.0021 (7)0.0107 (7)0.0008 (7)
C70.0563 (11)0.0428 (10)0.0494 (9)0.0078 (8)0.0193 (8)0.0051 (8)
C80.0559 (11)0.0412 (9)0.0433 (9)0.0014 (8)0.0143 (8)0.0009 (7)
C90.0607 (13)0.0519 (12)0.0640 (12)0.0077 (10)0.0141 (10)0.0108 (9)
C100.0556 (13)0.0749 (15)0.0660 (13)0.0008 (11)0.0096 (10)0.0038 (11)
C110.0736 (15)0.0634 (14)0.0451 (10)0.0151 (11)0.0085 (9)0.0005 (9)
C120.0828 (16)0.0545 (12)0.0484 (10)0.0020 (11)0.0147 (10)0.0124 (9)
C130.0614 (13)0.0586 (12)0.0522 (11)0.0069 (10)0.0174 (9)0.0101 (9)
C140.0424 (9)0.0360 (8)0.0393 (8)0.0002 (7)0.0090 (7)0.0014 (6)
C150.0450 (10)0.0531 (11)0.0491 (10)0.0040 (8)0.0004 (8)0.0048 (8)
C160.0611 (12)0.0535 (11)0.0415 (9)0.0004 (9)0.0014 (8)0.0081 (8)
C170.0562 (11)0.0402 (9)0.0447 (9)0.0030 (8)0.0198 (8)0.0002 (7)
C180.0411 (10)0.0457 (10)0.0574 (10)0.0025 (8)0.0090 (8)0.0002 (8)
C190.0433 (10)0.0427 (9)0.0465 (9)0.0016 (8)0.0029 (7)0.0048 (7)
C200.0502 (10)0.0361 (9)0.0469 (9)0.0048 (7)0.0091 (8)0.0047 (7)
C210.0570 (12)0.0542 (11)0.0459 (9)0.0034 (9)0.0086 (8)0.0114 (8)
C220.0569 (12)0.0552 (12)0.0549 (11)0.0034 (10)0.0162 (9)0.0050 (9)
C230.0513 (11)0.0397 (10)0.0659 (12)0.0011 (8)0.0060 (9)0.0104 (8)
C240.0593 (13)0.0685 (15)0.0720 (14)0.0010 (11)0.0097 (11)0.0181 (12)
C250.0635 (14)0.0664 (14)0.0637 (13)0.0024 (11)0.0024 (10)0.0300 (11)
C260.0375 (9)0.0437 (9)0.0396 (8)0.0027 (7)0.0075 (6)0.0031 (7)
C270.0421 (10)0.0679 (13)0.0428 (9)0.0010 (9)0.0043 (7)0.0072 (8)
C280.0469 (11)0.0878 (16)0.0382 (9)0.0089 (11)0.0059 (8)0.0003 (9)
C290.0462 (11)0.0725 (14)0.0498 (10)0.0123 (10)0.0173 (8)0.0154 (9)
C300.0568 (12)0.0572 (12)0.0578 (11)0.0074 (10)0.0141 (9)0.0059 (9)
C310.0563 (11)0.0492 (10)0.0416 (9)0.0053 (9)0.0060 (8)0.0022 (7)
C320.100 (2)0.100 (2)0.0659 (15)0.0409 (18)0.0087 (14)0.0101 (14)
C330.0553 (13)0.0606 (14)0.1015 (19)0.0034 (11)0.0041 (12)0.0168 (13)
Geometric parameters (Å, º) top
S1—C71.7398 (19)C16—H160.9300
S1—C81.766 (2)C17—C181.376 (3)
S2—C41.7496 (18)C18—C191.378 (3)
S2—C201.776 (2)C18—H180.9300
Cl1—C171.7340 (18)C19—H190.9300
Cl2—C291.736 (2)C20—C251.373 (3)
N1—C51.328 (2)C20—C211.377 (3)
N1—N21.3565 (19)C21—C221.379 (3)
N2—C31.352 (2)C21—H210.9300
N2—C61.419 (2)C22—C231.376 (3)
C3—C41.362 (3)C22—H220.9300
C3—H30.9300C23—C241.374 (3)
C4—C51.418 (3)C23—C331.500 (3)
C5—C261.467 (2)C24—C251.373 (3)
C6—C71.333 (3)C24—H240.9300
C6—C141.484 (2)C25—H250.9300
C7—H70.9300C26—C311.383 (3)
C8—C91.380 (3)C26—C271.389 (2)
C8—C131.385 (3)C27—C281.379 (3)
C9—C101.377 (3)C27—H270.9300
C9—H90.9300C28—C291.369 (3)
C10—C111.376 (3)C28—H280.9300
C10—H100.9300C29—C301.375 (3)
C11—C121.372 (4)C30—C311.381 (3)
C11—C321.508 (3)C30—H300.9300
C12—C131.376 (3)C31—H310.9300
C12—H120.9300C32—H32A0.9600
C13—H130.9300C32—H32B0.9600
C14—C191.383 (3)C32—H32C0.9600
C14—C151.385 (2)C33—H33A0.9600
C15—C161.374 (3)C33—H33B0.9600
C15—H150.9300C33—H33C0.9600
C16—C171.371 (3)
C7—S1—C8103.04 (9)C19—C18—H18120.5
C4—S2—C20102.51 (9)C18—C19—C14120.68 (17)
C5—N1—N2105.26 (13)C18—C19—H19119.7
C3—N2—N1111.58 (14)C14—C19—H19119.7
C3—N2—C6127.92 (15)C25—C20—C21118.63 (19)
N1—N2—C6120.49 (14)C25—C20—S2123.61 (16)
N2—C3—C4107.54 (16)C21—C20—S2117.76 (14)
N2—C3—H3126.2C20—C21—C22120.14 (18)
C4—C3—H3126.2C20—C21—H21119.9
C3—C4—C5104.82 (15)C22—C21—H21119.9
C3—C4—S2125.11 (15)C23—C22—C21121.67 (19)
C5—C4—S2130.04 (14)C23—C22—H22119.2
N1—C5—C4110.80 (15)C21—C22—H22119.2
N1—C5—C26118.34 (15)C24—C23—C22117.2 (2)
C4—C5—C26130.85 (15)C24—C23—C33121.1 (2)
C7—C6—N2119.92 (16)C22—C23—C33121.7 (2)
C7—C6—C14124.46 (16)C25—C24—C23121.9 (2)
N2—C6—C14115.62 (14)C25—C24—H24119.1
C6—C7—S1120.93 (15)C23—C24—H24119.1
C6—C7—H7119.5C20—C25—C24120.4 (2)
S1—C7—H7119.5C20—C25—H25119.8
C9—C8—C13119.17 (19)C24—C25—H25119.8
C9—C8—S1123.22 (15)C31—C26—C27118.79 (17)
C13—C8—S1117.56 (16)C31—C26—C5119.41 (15)
C10—C9—C8119.4 (2)C27—C26—C5121.71 (17)
C10—C9—H9120.3C28—C27—C26120.04 (19)
C8—C9—H9120.3C28—C27—H27120.0
C11—C10—C9122.1 (2)C26—C27—H27120.0
C11—C10—H10119.0C29—C28—C27119.92 (18)
C9—C10—H10119.0C29—C28—H28120.0
C12—C11—C10117.8 (2)C27—C28—H28120.0
C12—C11—C32121.8 (2)C28—C29—C30121.33 (19)
C10—C11—C32120.4 (2)C28—C29—Cl2119.50 (16)
C11—C12—C13121.5 (2)C30—C29—Cl2119.16 (18)
C11—C12—H12119.3C29—C30—C31118.5 (2)
C13—C12—H12119.3C29—C30—H30120.8
C12—C13—C8120.0 (2)C31—C30—H30120.8
C12—C13—H13120.0C30—C31—C26121.40 (18)
C8—C13—H13120.0C30—C31—H31119.3
C19—C14—C15118.97 (16)C26—C31—H31119.3
C19—C14—C6121.71 (15)C11—C32—H32A109.5
C15—C14—C6119.30 (16)C11—C32—H32B109.5
C16—C15—C14120.76 (18)H32A—C32—H32B109.5
C16—C15—H15119.6C11—C32—H32C109.5
C14—C15—H15119.6H32A—C32—H32C109.5
C17—C16—C15119.21 (17)H32B—C32—H32C109.5
C17—C16—H16120.4C23—C33—H33A109.5
C15—C16—H16120.4C23—C33—H33B109.5
C16—C17—C18121.34 (17)H33A—C33—H33B109.5
C16—C17—Cl1119.20 (15)C23—C33—H33C109.5
C18—C17—Cl1119.46 (16)H33A—C33—H33C109.5
C17—C18—C19119.02 (18)H33B—C33—H33C109.5
C17—C18—H18120.5
C5—N1—N2—C30.3 (2)C19—C14—C15—C160.6 (3)
C5—N1—N2—C6179.36 (16)C6—C14—C15—C16177.49 (18)
N1—N2—C3—C40.4 (2)C14—C15—C16—C170.8 (3)
C6—N2—C3—C4179.37 (18)C15—C16—C17—C181.5 (3)
N2—C3—C4—C50.3 (2)C15—C16—C17—Cl1177.69 (16)
N2—C3—C4—S2178.16 (14)C16—C17—C18—C190.8 (3)
C20—S2—C4—C3108.01 (18)Cl1—C17—C18—C19178.36 (15)
C20—S2—C4—C573.92 (19)C17—C18—C19—C140.6 (3)
N2—N1—C5—C40.10 (19)C15—C14—C19—C181.3 (3)
N2—N1—C5—C26179.47 (15)C6—C14—C19—C18176.76 (17)
C3—C4—C5—N10.1 (2)C4—S2—C20—C2518.3 (2)
S2—C4—C5—N1178.23 (15)C4—S2—C20—C21162.26 (16)
C3—C4—C5—C26179.13 (18)C25—C20—C21—C222.6 (3)
S2—C4—C5—C262.5 (3)S2—C20—C21—C22177.86 (16)
C3—N2—C6—C7171.8 (2)C20—C21—C22—C230.4 (3)
N1—N2—C6—C77.1 (3)C21—C22—C23—C242.7 (3)
C3—N2—C6—C147.6 (3)C21—C22—C23—C33174.9 (2)
N1—N2—C6—C14173.51 (15)C22—C23—C24—C252.0 (4)
N2—C6—C7—S1169.62 (14)C33—C23—C24—C25175.6 (2)
C14—C6—C7—S111.0 (3)C21—C20—C25—C243.2 (4)
C8—S1—C7—C6138.30 (17)S2—C20—C25—C24177.26 (19)
C7—S1—C8—C927.9 (2)C23—C24—C25—C200.9 (4)
C7—S1—C8—C13154.47 (16)N1—C5—C26—C3137.2 (2)
C13—C8—C9—C101.3 (3)C4—C5—C26—C31142.1 (2)
S1—C8—C9—C10178.90 (17)N1—C5—C26—C27139.28 (18)
C8—C9—C10—C111.3 (4)C4—C5—C26—C2741.5 (3)
C9—C10—C11—C120.0 (3)C31—C26—C27—C282.1 (3)
C9—C10—C11—C32179.8 (2)C5—C26—C27—C28174.36 (18)
C10—C11—C12—C131.3 (3)C26—C27—C28—C290.3 (3)
C32—C11—C12—C13178.9 (2)C27—C28—C29—C302.0 (3)
C11—C12—C13—C81.3 (3)C27—C28—C29—Cl2178.72 (16)
C9—C8—C13—C120.1 (3)C28—C29—C30—C312.3 (3)
S1—C8—C13—C12177.79 (17)Cl2—C29—C30—C31178.35 (16)
C7—C6—C14—C19108.0 (2)C29—C30—C31—C260.5 (3)
N2—C6—C14—C1972.6 (2)C27—C26—C31—C301.7 (3)
C7—C6—C14—C1570.0 (3)C5—C26—C31—C30174.82 (18)
N2—C6—C14—C15109.32 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33C···Cg3i0.962.903.851 (3)171
C9—H9···Cg5ii0.933.033.839 (2)147
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC31H24Cl2N2S2
Mr559.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.7515 (2), 10.2097 (3), 27.6705 (6)
β (°) 96.402 (1)
V3)2737.69 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.883, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
38656, 9852, 5773
Rint0.032
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.160, 1.03
No. of reflections9852
No. of parameters336
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, (1997)), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33C···Cg3i0.962.903.851 (3)171
C9—H9···Cg5ii0.933.033.839 (2)147
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z.
 

Acknowledgements

PR thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.

References

First citationBaraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.  Web of Science CrossRef CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147–66.  CAS PubMed Web of Science Google Scholar
First citationChen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572–576.  CAS Google Scholar
First citationCottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLondershausen, M. (1996). Pestic. Sci. 48, 269–274.  CrossRef CAS Google Scholar
First citationMishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199–200.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds