metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-Hydr­­oxy-N′-[1-(2-oxido­phenyl)ethyl­­idene]benzohydrazidato}morpholinecopper(II)

aChemical Engineering Institute, Northeast Dianli University, Jilin, Jilin 132012, People's Republic of China
*Correspondence e-mail: songzhulin@163.com

(Received 16 October 2009; accepted 18 October 2009; online 23 October 2009)

The CuII ion in the title complex, [Cu(C15H12N2O3)(C4H9NO)], is coordinated by one carbonyl O atom, one hydrazine N atom and one phenolate O atom from the doubly deprotonated tridentate ligand and one N atom from a morpholine mol­ecule, forming a distorted trans-CuN2O2 square-planar coordination geometry. An intra­molecular O—H⋯N hydrogen bond occurs within the ligand, generating an S(6) ring.

Related literature

For background to aroylhydrazone derivatives, see: Singh (1992[Singh, G. (1992). Synth. React. Inorg. Met.-Org. Chem. 22, 1605-1618.]); Liu et al. (2003[Liu, L., Ji, Y.-L., Jia, D.-Z. & Yu, K.-B. (2003). Chin. J. Struct. Chem. 22, 568-572.]); Bai et al. (2005[Bai, Y., Dang, D. B., Duan, C. Y., Song, Y. & Meng, Q. J. (2005). Inorg. Chem. 44, 5972-5974.]). For related structures, see: Gatto et al. (2004[Gatto, C. C., Schulz-Lang, E., Kupfer, A., Hagenbach, A. & Abram, U. (2004). Z. Anorg. Allg. Chem. 630, 1286-1295.]); Huo et al. (2004[Huo, L.-H., Lu, Z.-Z., Gao, S., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1636-m1638.]); Chen et al. (2009[Chen, X.-H., Wu, Q.-J., Liang, Z.-Y., Zhan, C.-R. & Liu, J.-B. (2009). Acta Cryst. C65, m190-m194.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C15H12N2O3)(C4H9NO)]

  • Mr = 418.93

  • Monoclinic, P 21 /n

  • a = 9.220 (4) Å

  • b = 17.616 (9) Å

  • c = 12.023 (6) Å

  • β = 112.257 (14)°

  • V = 1807.4 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 293 K

  • 0.26 × 0.17 × 0.14 mm

Data collection
  • Rigaku Weissenberg IP diffractometer

  • Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]) Tmin = 0.769, Tmax = 0.837

  • 16528 measured reflections

  • 4032 independent reflections

  • 3273 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.089

  • S = 1.05

  • 4032 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O3 1.8702 (17)
Cu1—O2 1.9208 (16)
Cu1—N2 1.9409 (18)
Cu1—N3 2.0308 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.87 2.588 (3) 146

Data collection: TEXRAY (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]); cell refinement: TEXRAY; data reduction: TEXSAN (Mol­ecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past decade, much attention has been focused on the study of aroylhydrazones derivative with aryl, aroyl and heteroaroyl Schiff bases due to their coordination abilities to metal ions (Singh et al., 1992; Liu et al., 2003; Bai et al., 2005). Ongoing the study of aroylhydrazone complexes, we report here the synthesis and crystal structure of a new complex with 2-hydroxy-N'- (2-oxyphenyl-ethylidene)benzohydrazidate(2-) ligand (Fig. 1).

The title complex, (I), contains one copper(II) center having distorted quadrilateral coordination environment, one O,N,O'-tridentate ligand molecule and one coordinated morpholine molecule. There exists one intramolecular phenol-hydrazone O—H···N hydrogen bond in each ligand, forming a six-membered ring.

Related literature top

For background to aroylhydrazone derivatives, see: Singh et al. (1992); Liu et al. (2003); Bai et al. (2005). For related structures, see: Gatto et al. (2004); Huo et al. (2004); Chen et al. (2009).

Experimental top

The ligand was prepared by the reaction of 2-hydroxyacetophenone and salicylhydrazine in a molar ratio of 1:1 under reflux in ethanol for 2 h. The white precipitate was collected, washed several times with ethanol and dried in vacuo (yield 79%). Morpholine (3 ml) was dropped into the mixture of 2-hydroxy-N'-(2-oxyphenyl- ethylidene)benzohydrazide (27 mg, 0.1 mmol) and Cu(Ac)2.2H2O (21 mg, 0.1 mmol) in methanol (10 ml). After stirring for 5 h, the reaction mixture was filtered and left to stand at room temperature. Green prisms of (I) were obtained by slow evaporation after 10 d. Analysis calculated for C19H21N3O4Cu: C 54.47, H 5.05, N 10.03%; found: C 53.99, H 5.01, N 10.29%.

Refinement top

H atoms bouded to phenolate O and morpholine N atoms were located in difference Fourier maps and were refined isotropically with O—H and N—H distance restraints of 0.82 and 0.91 Å, respectively. All other H atoms were placed in idealized positions and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for the methylene H atoms].

Structure description top

In the past decade, much attention has been focused on the study of aroylhydrazones derivative with aryl, aroyl and heteroaroyl Schiff bases due to their coordination abilities to metal ions (Singh et al., 1992; Liu et al., 2003; Bai et al., 2005). Ongoing the study of aroylhydrazone complexes, we report here the synthesis and crystal structure of a new complex with 2-hydroxy-N'- (2-oxyphenyl-ethylidene)benzohydrazidate(2-) ligand (Fig. 1).

The title complex, (I), contains one copper(II) center having distorted quadrilateral coordination environment, one O,N,O'-tridentate ligand molecule and one coordinated morpholine molecule. There exists one intramolecular phenol-hydrazone O—H···N hydrogen bond in each ligand, forming a six-membered ring.

For background to aroylhydrazone derivatives, see: Singh et al. (1992); Liu et al. (2003); Bai et al. (2005). For related structures, see: Gatto et al. (2004); Huo et al. (2004); Chen et al. (2009).

Computing details top

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY (Molecular Structure Corporation, 1999); data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate hydrogen bonding. Only H atoms involved in hydrogen bonds have been included.
{2-Hydroxy-N'-[1-(2- oxidophenyl)ethylidene]benzohydrazidato}morpholinecopper(II) top
Crystal data top
[Cu(C15H12N2O3)(C4H9NO)]F(000) = 868
Mr = 418.93Dx = 1.540 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4032 reflections
a = 9.220 (4) Åθ = 3.3–27.5°
b = 17.616 (9) ŵ = 1.24 mm1
c = 12.023 (6) ÅT = 293 K
β = 112.257 (14)°Prism, green
V = 1807.4 (15) Å30.26 × 0.17 × 0.14 mm
Z = 4
Data collection top
Rigaku Weissenberg IP
diffractometer
4032 independent reflections
Radiation source: fine-focus sealed tube3273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
h = 1110
Tmin = 0.769, Tmax = 0.837k = 2222
16528 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.042P)2 + 0.6843P]
where P = (Fo2 + 2Fc2)/3
4032 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu(C15H12N2O3)(C4H9NO)]V = 1807.4 (15) Å3
Mr = 418.93Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.220 (4) ŵ = 1.24 mm1
b = 17.616 (9) ÅT = 293 K
c = 12.023 (6) Å0.26 × 0.17 × 0.14 mm
β = 112.257 (14)°
Data collection top
Rigaku Weissenberg IP
diffractometer
4032 independent reflections
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
3273 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 0.837Rint = 0.049
16528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
4032 reflectionsΔρmin = 0.47 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.35584 (3)0.512750 (15)0.55888 (2)0.03343 (10)
O10.2016 (2)0.39749 (11)0.30393 (17)0.0635 (5)
H1A0.14040.43300.31470.064 (9)*
O20.24346 (16)0.42406 (8)0.57392 (13)0.0392 (4)
O30.46114 (18)0.59329 (10)0.52104 (14)0.0479 (4)
O40.7081 (2)0.51533 (12)0.97389 (16)0.0626 (5)
N10.06587 (19)0.46639 (10)0.39142 (17)0.0373 (4)
N20.17322 (19)0.52585 (9)0.41154 (16)0.0334 (4)
N30.5322 (2)0.49568 (9)0.72070 (16)0.0343 (4)
H3B0.59800.46180.70680.042 (6)*
C10.1317 (3)0.34097 (13)0.3828 (2)0.0438 (5)
C20.0206 (2)0.34834 (12)0.4699 (2)0.0369 (5)
C30.0825 (3)0.28792 (13)0.5489 (2)0.0428 (5)
H3A0.18290.29210.60750.051*
C40.0011 (3)0.22263 (14)0.5418 (3)0.0534 (6)
H4A0.04280.18270.59460.064*
C50.1511 (3)0.21633 (16)0.4560 (3)0.0618 (7)
H5A0.20850.17220.45130.074*
C60.2160 (3)0.27518 (16)0.3775 (3)0.0583 (7)
H6A0.31740.27070.32050.070*
C70.1169 (2)0.41671 (12)0.4806 (2)0.0356 (5)
C80.1354 (2)0.58214 (12)0.33475 (19)0.0362 (5)
C90.2478 (2)0.64281 (12)0.34607 (19)0.0361 (5)
C100.4016 (3)0.64486 (12)0.43607 (19)0.0370 (5)
C110.5022 (3)0.70507 (13)0.4351 (2)0.0482 (6)
H11A0.60180.70720.49520.058*
C120.4580 (3)0.76027 (14)0.3488 (3)0.0570 (7)
H12A0.52750.79870.34940.068*
C130.3082 (4)0.75849 (15)0.2602 (3)0.0619 (7)
H13A0.27710.79580.20110.074*
C140.2067 (3)0.70213 (14)0.2596 (2)0.0503 (6)
H14A0.10650.70250.20020.060*
C150.0237 (3)0.58277 (16)0.2353 (2)0.0536 (6)
H15A0.04900.53260.20240.080*
H15B0.02350.61720.17350.080*
H15C0.10040.59890.26650.080*
C160.6283 (3)0.56298 (15)0.7719 (2)0.0539 (7)
H16A0.56260.60220.78490.065*
H16B0.67060.58240.71490.065*
C170.7606 (3)0.5460 (2)0.8884 (2)0.0656 (8)
H17A0.83190.51040.87400.079*
H17B0.81820.59240.92000.079*
C180.6243 (4)0.44769 (19)0.9289 (2)0.0773 (10)
H18A0.58810.42680.98850.093*
H18B0.69410.41080.91530.093*
C190.4852 (3)0.46037 (18)0.8129 (2)0.0630 (8)
H19A0.43480.41210.78320.076*
H19B0.40980.49280.82820.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02910 (14)0.03649 (15)0.02903 (15)0.00266 (10)0.00461 (11)0.00205 (10)
O10.0410 (9)0.0587 (11)0.0667 (12)0.0113 (8)0.0069 (9)0.0105 (9)
O20.0315 (8)0.0406 (8)0.0368 (8)0.0046 (6)0.0032 (7)0.0024 (6)
O30.0385 (8)0.0521 (10)0.0427 (9)0.0085 (7)0.0035 (7)0.0171 (7)
O40.0669 (12)0.0777 (13)0.0314 (9)0.0159 (10)0.0053 (9)0.0069 (8)
N10.0294 (9)0.0389 (10)0.0378 (10)0.0020 (7)0.0060 (8)0.0014 (8)
N20.0295 (8)0.0347 (10)0.0316 (9)0.0004 (7)0.0067 (7)0.0024 (7)
N30.0321 (9)0.0344 (9)0.0314 (9)0.0001 (7)0.0065 (8)0.0045 (7)
C10.0394 (12)0.0444 (13)0.0434 (13)0.0061 (9)0.0111 (10)0.0073 (10)
C20.0326 (10)0.0384 (11)0.0383 (11)0.0029 (8)0.0118 (9)0.0091 (9)
C30.0402 (12)0.0424 (12)0.0438 (13)0.0020 (9)0.0138 (11)0.0039 (10)
C40.0618 (16)0.0403 (13)0.0558 (15)0.0078 (11)0.0197 (13)0.0032 (11)
C50.0701 (18)0.0481 (15)0.0636 (17)0.0251 (13)0.0212 (15)0.0121 (13)
C60.0494 (15)0.0606 (16)0.0532 (15)0.0206 (12)0.0063 (13)0.0138 (13)
C70.0297 (10)0.0382 (11)0.0377 (11)0.0000 (8)0.0115 (9)0.0047 (9)
C80.0335 (11)0.0416 (12)0.0304 (10)0.0084 (8)0.0087 (9)0.0003 (8)
C90.0391 (11)0.0350 (11)0.0341 (11)0.0086 (8)0.0139 (9)0.0012 (8)
C100.0416 (11)0.0356 (11)0.0345 (11)0.0025 (8)0.0151 (10)0.0017 (9)
C110.0489 (13)0.0413 (13)0.0524 (14)0.0024 (10)0.0170 (12)0.0038 (10)
C120.0651 (17)0.0374 (13)0.0692 (17)0.0018 (11)0.0262 (15)0.0089 (12)
C130.0736 (18)0.0452 (15)0.0617 (17)0.0103 (13)0.0196 (15)0.0198 (13)
C140.0526 (14)0.0436 (14)0.0478 (14)0.0109 (11)0.0112 (12)0.0126 (11)
C150.0411 (13)0.0613 (16)0.0451 (14)0.0045 (11)0.0014 (11)0.0107 (11)
C160.0597 (15)0.0538 (15)0.0383 (12)0.0212 (12)0.0072 (12)0.0059 (10)
C170.0515 (15)0.092 (2)0.0416 (14)0.0220 (15)0.0043 (13)0.0141 (14)
C180.100 (2)0.068 (2)0.0369 (14)0.0222 (17)0.0044 (16)0.0128 (13)
C190.0653 (17)0.0730 (18)0.0367 (13)0.0284 (14)0.0036 (13)0.0081 (12)
Geometric parameters (Å, º) top
Cu1—O31.8702 (17)C6—H6A0.9300
Cu1—O21.9208 (16)C8—C91.459 (3)
Cu1—N21.9409 (18)C8—C151.501 (3)
Cu1—N32.0308 (19)C9—C141.421 (3)
O1—C11.357 (3)C9—C101.421 (3)
O1—H1A0.8200C10—C111.412 (3)
O2—C71.283 (3)C11—C121.366 (3)
O3—C101.321 (3)C11—H11A0.9300
O4—C171.399 (4)C12—C131.389 (4)
O4—C181.412 (4)C12—H12A0.9300
N1—C71.325 (3)C13—C141.362 (4)
N1—N21.398 (2)C13—H13A0.9300
N2—C81.309 (3)C14—H14A0.9300
N3—C161.468 (3)C15—H15A0.9600
N3—C191.472 (3)C15—H15B0.9600
N3—H3B0.9100C15—H15C0.9600
C1—C61.384 (3)C16—C171.499 (4)
C1—C21.404 (3)C16—H16A0.9700
C2—C31.397 (3)C16—H16B0.9700
C2—C71.473 (3)C17—H17A0.9700
C3—C41.370 (3)C17—H17B0.9700
C3—H3A0.9300C18—C191.512 (4)
C4—C51.381 (4)C18—H18A0.9700
C4—H4A0.9300C18—H18B0.9700
C5—C61.377 (4)C19—H19A0.9700
C5—H5A0.9300C19—H19B0.9700
O3—Cu1—O2171.23 (7)C10—C9—C8123.93 (19)
O3—Cu1—N292.21 (7)O3—C10—C11116.2 (2)
O2—Cu1—N282.54 (7)O3—C10—C9125.0 (2)
O3—Cu1—N392.53 (7)C11—C10—C9118.8 (2)
O2—Cu1—N393.11 (7)C12—C11—C10122.2 (2)
N2—Cu1—N3174.38 (8)C12—C11—H11A118.9
C1—O1—H1A109.5C10—C11—H11A118.9
C7—O2—Cu1110.14 (14)C11—C12—C13119.4 (2)
C10—O3—Cu1127.42 (14)C11—C12—H12A120.3
C17—O4—C18109.6 (2)C13—C12—H12A120.3
C7—N1—N2110.10 (17)C14—C13—C12120.1 (2)
C8—N2—N1117.62 (17)C14—C13—H13A119.9
C8—N2—Cu1129.87 (15)C12—C13—H13A119.9
N1—N2—Cu1112.43 (13)C13—C14—C9122.7 (2)
C16—N3—C19109.2 (2)C13—C14—H14A118.7
C16—N3—Cu1114.77 (15)C9—C14—H14A118.7
C19—N3—Cu1115.24 (15)C8—C15—H15A109.5
C16—N3—H3B105.6C8—C15—H15B109.5
C19—N3—H3B105.6H15A—C15—H15B109.5
Cu1—N3—H3B105.6C8—C15—H15C109.5
O1—C1—C6118.2 (2)H15A—C15—H15C109.5
O1—C1—C2122.0 (2)H15B—C15—H15C109.5
C6—C1—C2119.8 (2)N3—C16—C17112.2 (2)
C3—C2—C1118.2 (2)N3—C16—H16A109.2
C3—C2—C7119.06 (19)C17—C16—H16A109.2
C1—C2—C7122.7 (2)N3—C16—H16B109.2
C4—C3—C2121.5 (2)C17—C16—H16B109.2
C4—C3—H3A119.3H16A—C16—H16B107.9
C2—C3—H3A119.3O4—C17—C16112.2 (2)
C3—C4—C5119.7 (3)O4—C17—H17A109.2
C3—C4—H4A120.2C16—C17—H17A109.2
C5—C4—H4A120.2O4—C17—H17B109.2
C6—C5—C4120.2 (2)C16—C17—H17B109.2
C6—C5—H5A119.9H17A—C17—H17B107.9
C4—C5—H5A119.9O4—C18—C19112.3 (2)
C5—C6—C1120.6 (2)O4—C18—H18A109.2
C5—C6—H6A119.7C19—C18—H18A109.2
C1—C6—H6A119.7O4—C18—H18B109.2
O2—C7—N1124.6 (2)C19—C18—H18B109.2
O2—C7—C2118.6 (2)H18A—C18—H18B107.9
N1—C7—C2116.84 (19)N3—C19—C18111.6 (2)
N2—C8—C9119.94 (18)N3—C19—H19A109.3
N2—C8—C15119.1 (2)C18—C19—H19A109.3
C9—C8—C15121.0 (2)N3—C19—H19B109.3
C14—C9—C10116.8 (2)C18—C19—H19B109.3
C14—C9—C8119.2 (2)H19A—C19—H19B108.0
O3—Cu1—O2—C749.8 (5)N2—N1—C7—C2176.95 (18)
N2—Cu1—O2—C73.75 (14)C3—C2—C7—O211.5 (3)
N3—Cu1—O2—C7179.83 (14)C1—C2—C7—O2168.8 (2)
O2—Cu1—O3—C1065.8 (5)C3—C2—C7—N1168.0 (2)
N2—Cu1—O3—C1012.8 (2)C1—C2—C7—N111.7 (3)
N3—Cu1—O3—C10164.2 (2)N1—N2—C8—C9175.30 (18)
C7—N1—N2—C8176.03 (19)Cu1—N2—C8—C98.3 (3)
C7—N1—N2—Cu11.0 (2)N1—N2—C8—C154.2 (3)
O3—Cu1—N2—C813.1 (2)Cu1—N2—C8—C15172.20 (17)
O2—Cu1—N2—C8173.9 (2)N2—C8—C9—C14177.9 (2)
N3—Cu1—N2—C8134.4 (7)C15—C8—C9—C141.6 (3)
O3—Cu1—N2—N1170.31 (14)N2—C8—C9—C101.1 (3)
O2—Cu1—N2—N12.64 (14)C15—C8—C9—C10178.4 (2)
N3—Cu1—N2—N142.2 (8)Cu1—O3—C10—C11172.81 (17)
O3—Cu1—N3—C1625.97 (19)Cu1—O3—C10—C98.7 (3)
O2—Cu1—N3—C16160.75 (18)C14—C9—C10—O3177.8 (2)
N2—Cu1—N3—C16121.6 (7)C8—C9—C10—O30.9 (4)
O3—Cu1—N3—C19154.11 (19)C14—C9—C10—C110.6 (3)
O2—Cu1—N3—C1932.60 (19)C8—C9—C10—C11177.5 (2)
N2—Cu1—N3—C196.6 (8)O3—C10—C11—C12176.9 (2)
O1—C1—C2—C3178.8 (2)C9—C10—C11—C121.7 (4)
C6—C1—C2—C30.3 (4)C10—C11—C12—C131.4 (4)
O1—C1—C2—C71.4 (4)C11—C12—C13—C140.0 (4)
C6—C1—C2—C7180.0 (2)C12—C13—C14—C91.0 (4)
C1—C2—C3—C40.6 (4)C10—C9—C14—C130.7 (4)
C7—C2—C3—C4179.1 (2)C8—C9—C14—C13176.3 (3)
C2—C3—C4—C50.9 (4)C19—N3—C16—C1751.4 (3)
C3—C4—C5—C60.3 (4)Cu1—N3—C16—C17177.45 (19)
C4—C5—C6—C10.6 (5)C18—O4—C17—C1659.0 (4)
O1—C1—C6—C5179.5 (3)N3—C16—C17—O456.9 (3)
C2—C1—C6—C50.9 (4)C17—O4—C18—C1958.7 (4)
Cu1—O2—C7—N14.7 (3)C16—N3—C19—C1850.8 (3)
Cu1—O2—C7—C2174.76 (15)Cu1—N3—C19—C18178.3 (2)
N2—N1—C7—O22.6 (3)O4—C18—C19—N355.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.872.588 (3)146

Experimental details

Crystal data
Chemical formula[Cu(C15H12N2O3)(C4H9NO)]
Mr418.93
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.220 (4), 17.616 (9), 12.023 (6)
β (°) 112.257 (14)
V3)1807.4 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.26 × 0.17 × 0.14
Data collection
DiffractometerRigaku Weissenberg IP
Absorption correctionMulti-scan
(TEXRAY; Molecular Structure Corporation, 1999)
Tmin, Tmax0.769, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
16528, 4032, 3273
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.05
No. of reflections4032
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.47

Computer programs: TEXRAY (Molecular Structure Corporation, 1999), TEXSAN (Molecular Structure Corporation, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Cu1—O31.8702 (17)Cu1—N21.9409 (18)
Cu1—O21.9208 (16)Cu1—N32.0308 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.872.588 (3)146
 

Acknowledgements

We thank the Northeast Dianli University for supporting this study.

References

First citationBai, Y., Dang, D. B., Duan, C. Y., Song, Y. & Meng, Q. J. (2005). Inorg. Chem. 44, 5972–5974.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, X.-H., Wu, Q.-J., Liang, Z.-Y., Zhan, C.-R. & Liu, J.-B. (2009). Acta Cryst. C65, m190–m194.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGatto, C. C., Schulz-Lang, E., Kupfer, A., Hagenbach, A. & Abram, U. (2004). Z. Anorg. Allg. Chem. 630, 1286–1295.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuo, L.-H., Lu, Z.-Z., Gao, S., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1636–m1638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, L., Ji, Y.-L., Jia, D.-Z. & Yu, K.-B. (2003). Chin. J. Struct. Chem. 22, 568–572.  CAS Google Scholar
First citationMolecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, G. (1992). Synth. React. Inorg. Met.-Org. Chem. 22, 1605–1618.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds