metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(3,5-Di­methyl-1H-pyrazol-1-yl-κN2)-1,10-phenanthroline-κ2N,N′]bis­­(thio­cyanato-κN)cadmium(II)

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: shijingmin1955@yahoo.com.cn

(Received 28 September 2009; accepted 30 September 2009; online 7 October 2009)

In the title complex, [Cd(NCS)2(C17H14N4)], the CdII ion is in a distorted trigonal-bipyramidal CdN5 coordination geometry. In the crystal structure, there is a ππ stacking inter­action involving a pyrazole ring and a symmetry-related pyridine ring with a centroid–centroid distance of 3.578 (3) Å.

Related literature

For a related structure, see: Liu et al. (2008[Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58-m60.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)2(C17H14N4)]

  • Mr = 502.88

  • Monoclinic, P 21

  • a = 7.7324 (15) Å

  • b = 14.811 (3) Å

  • c = 8.7150 (17) Å

  • β = 104.006 (2)°

  • V = 968.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 298 K

  • 0.25 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.727, Tmax = 0.876

  • 5622 measured reflections

  • 3971 independent reflections

  • 3695 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.082

  • S = 1.03

  • 3971 reflections

  • 255 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1803 Friedel pairs

  • Flack parameter: 0.03 (3)

Table 1
Selected geometric parameters (Å, °)

Cd1—N5 2.148 (4)
Cd1—N4 2.174 (5)
Cd1—N2 2.286 (4)
Cd1—N3 2.310 (4)
Cd1—N1 2.350 (4)
N5—Cd1—N4 104.40 (19)
N5—Cd1—N2 130.96 (16)
N4—Cd1—N2 124.53 (18)
N5—Cd1—N3 103.47 (16)
N4—Cd1—N3 99.06 (19)
N2—Cd1—N3 68.42 (14)
N5—Cd1—N1 103.92 (15)
N4—Cd1—N1 101.66 (18)
N2—Cd1—N1 71.66 (14)
N3—Cd1—N1 140.03 (13)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry and many complexes have been reported with these types of compounds as ligands [see e.g. Liu et al. (2008) for a closely related Cd complex]. To the best of knowledge, no crystal structures of complexes with 2-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline as a ligand have been reported so far, and herein we report the crystal structure of the title compound (I).

The molecular structure of the title compound in shown in Fig. 1. The CdII ion is coordinated by five N atoms in a distorted trigonal bipyramidal environment. Generally, CdII ion assumes six atoms coordination mode and the present five coordination mode may be attributed to the chelation mode of the ligand 2-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline. The non-hydrogen atoms of the 2-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline ligand define a plane within 0.0705 Å with a maximum deviation of 0.189 (6) Å for atom C8. In the crystal structure, there is a ππ stacking interaction involving the pyrazole ring and a symmetry related pyridine ring with the relevant distances being Cg1···Cg2i = 3.578 (3) Å and Cg1···Cg2iperp = 3.361 Å (symmetry code: (I) -1+x, y, z; Cg1 and Cg2 are the centroids of C7-C10/N3/N6 pyrazol ring and N1/C14/15/C17-C19 pyridine ring, respectively; Cg1···Cg2iperp is the perpendicular distance from Cg1 ring to Cg2i ring).

Related literature top

For a related structure, see: Liu et al. (2008).

Experimental top

10 ml methanol solution of 2-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline (0.0406 g, 0.148 mmol) was added to a 10 ml methanol solution containing Cd(ClO4).6H2O (0.0655 g, 0.156 mmol) and NaNCS (0.0121 g, 0.149 mmol), and the mixed soluton was stirred for a few minutes. The colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for about a week.

Refinement top

All H atoms were placed in calculated positions and refined as riding with C—H = 0.96 Å, Uiso = 1.5Ueq(C) for methyl H and C—H = 0.93 Å, Uiso = 1.2Ueq(C) for other H atoms.

Structure description top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry and many complexes have been reported with these types of compounds as ligands [see e.g. Liu et al. (2008) for a closely related Cd complex]. To the best of knowledge, no crystal structures of complexes with 2-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline as a ligand have been reported so far, and herein we report the crystal structure of the title compound (I).

The molecular structure of the title compound in shown in Fig. 1. The CdII ion is coordinated by five N atoms in a distorted trigonal bipyramidal environment. Generally, CdII ion assumes six atoms coordination mode and the present five coordination mode may be attributed to the chelation mode of the ligand 2-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline. The non-hydrogen atoms of the 2-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline ligand define a plane within 0.0705 Å with a maximum deviation of 0.189 (6) Å for atom C8. In the crystal structure, there is a ππ stacking interaction involving the pyrazole ring and a symmetry related pyridine ring with the relevant distances being Cg1···Cg2i = 3.578 (3) Å and Cg1···Cg2iperp = 3.361 Å (symmetry code: (I) -1+x, y, z; Cg1 and Cg2 are the centroids of C7-C10/N3/N6 pyrazol ring and N1/C14/15/C17-C19 pyridine ring, respectively; Cg1···Cg2iperp is the perpendicular distance from Cg1 ring to Cg2i ring).

For a related structure, see: Liu et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[2-(3,5-Dimethyl-1H-pyrazol-1-yl-κN2)-1,10- phenanthroline-κ2N,N']bis(thiocyanato-κN)cadmium(II) top
Crystal data top
[Cd(NCS)2(C17H14N4)]F(000) = 500
Mr = 502.88Dx = 1.725 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2683 reflections
a = 7.7324 (15) Åθ = 2.4–24.9°
b = 14.811 (3) ŵ = 1.36 mm1
c = 8.7150 (17) ÅT = 298 K
β = 104.006 (2)°Block, colorless
V = 968.4 (3) Å30.25 × 0.16 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
3971 independent reflections
Radiation source: fine-focus sealed tube3695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.727, Tmax = 0.876k = 1818
5622 measured reflectionsl = 114
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.2846P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.043
3971 reflectionsΔρmax = 0.90 e Å3
255 parametersΔρmin = 0.38 e Å3
1 restraintAbsolute structure: Flack (1983), 1803 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
[Cd(NCS)2(C17H14N4)]V = 968.4 (3) Å3
Mr = 502.88Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.7324 (15) ŵ = 1.36 mm1
b = 14.811 (3) ÅT = 298 K
c = 8.7150 (17) Å0.25 × 0.16 × 0.10 mm
β = 104.006 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3971 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3695 reflections with I > 2σ(I)
Tmin = 0.727, Tmax = 0.876Rint = 0.021
5622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.90 e Å3
S = 1.03Δρmin = 0.38 e Å3
3971 reflectionsAbsolute structure: Flack (1983), 1803 Friedel pairs
255 parametersAbsolute structure parameter: 0.03 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6366 (8)0.9188 (4)0.3905 (6)0.0571 (13)
H10.63460.96870.45470.069*
C20.9604 (10)0.8931 (5)0.5143 (8)0.065 (2)
H20.96580.94280.58040.078*
C30.7957 (8)0.8709 (4)0.4056 (6)0.0537 (13)
C40.7877 (6)0.7957 (3)0.3077 (5)0.0422 (10)
C50.4839 (8)0.8938 (3)0.2833 (7)0.0555 (13)
H50.37860.92590.27490.067*
C60.4893 (8)0.8186 (3)0.1861 (6)0.0426 (12)
C70.1719 (6)0.8183 (3)0.0153 (6)0.0505 (12)
C80.0992 (8)0.9038 (4)0.0664 (8)0.0646 (15)
H8A0.01890.91400.00240.097*
H8B0.17470.95340.05430.097*
H8C0.09530.89880.17540.097*
C90.0877 (7)0.7584 (3)0.0940 (7)0.0547 (13)
H90.02890.76230.15470.066*
C100.2094 (7)0.6895 (4)0.0984 (6)0.0498 (12)
C110.1863 (8)0.6062 (4)0.1965 (8)0.0699 (17)
H11A0.29610.59210.22400.105*
H11B0.09430.61580.29110.105*
H11C0.15330.55700.13770.105*
C120.5035 (9)0.4510 (4)0.1563 (7)0.0515 (14)
C130.7029 (6)0.6142 (3)0.3031 (6)0.0472 (12)
C141.0787 (7)0.6191 (3)0.2318 (6)0.0537 (14)
H141.07110.56890.16640.064*
C150.9446 (6)0.7413 (3)0.3156 (5)0.0440 (10)
C161.1065 (8)0.8435 (5)0.5223 (7)0.0664 (16)
H161.21230.86030.59280.080*
C171.1048 (7)0.7655 (3)0.4256 (6)0.0519 (12)
C181.2533 (7)0.7108 (4)0.4316 (6)0.0590 (14)
H181.36090.72400.50260.071*
C191.2406 (7)0.6379 (6)0.3332 (6)0.0634 (14)
H191.33950.60180.33480.076*
Cd10.64744 (4)0.64456 (2)0.05473 (3)0.04668 (10)
N10.9318 (6)0.6684 (2)0.2214 (4)0.0444 (10)
N20.6373 (6)0.7719 (3)0.2006 (4)0.0405 (9)
N30.3643 (5)0.7057 (3)0.0005 (5)0.0476 (9)
N40.5860 (8)0.5095 (3)0.1234 (7)0.0668 (14)
N50.6979 (6)0.6273 (3)0.1753 (5)0.0603 (12)
N60.3425 (5)0.7858 (2)0.0737 (5)0.0441 (9)
S10.3932 (3)0.36735 (13)0.2031 (2)0.0779 (5)
S20.7124 (2)0.59068 (13)0.48295 (17)0.0695 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.076 (4)0.043 (3)0.054 (3)0.003 (3)0.020 (3)0.011 (2)
C20.079 (6)0.060 (3)0.053 (3)0.016 (4)0.009 (3)0.017 (3)
C30.062 (3)0.049 (3)0.052 (3)0.007 (2)0.016 (2)0.003 (2)
C40.049 (3)0.039 (2)0.041 (2)0.0077 (19)0.016 (2)0.0044 (18)
C50.064 (4)0.043 (3)0.061 (3)0.007 (2)0.019 (3)0.003 (2)
C60.048 (3)0.036 (2)0.046 (3)0.002 (2)0.016 (2)0.006 (2)
C70.043 (3)0.046 (3)0.064 (3)0.001 (2)0.016 (2)0.015 (2)
C80.053 (3)0.049 (3)0.093 (5)0.007 (2)0.019 (3)0.015 (3)
C90.041 (3)0.056 (3)0.065 (3)0.000 (2)0.008 (2)0.011 (2)
C100.045 (3)0.054 (3)0.050 (3)0.009 (2)0.010 (2)0.002 (2)
C110.055 (3)0.078 (4)0.074 (4)0.010 (3)0.010 (3)0.018 (3)
C120.053 (3)0.052 (3)0.047 (3)0.010 (3)0.007 (2)0.008 (2)
C130.041 (3)0.042 (2)0.057 (3)0.0006 (18)0.010 (2)0.0041 (19)
C140.058 (3)0.053 (3)0.055 (3)0.002 (2)0.022 (2)0.005 (2)
C150.044 (3)0.050 (3)0.040 (2)0.005 (2)0.0133 (19)0.011 (2)
C160.059 (4)0.073 (4)0.059 (3)0.016 (3)0.003 (3)0.001 (3)
C170.047 (3)0.056 (3)0.050 (3)0.016 (2)0.006 (2)0.008 (2)
C180.045 (3)0.076 (4)0.050 (3)0.010 (3)0.001 (2)0.012 (3)
C190.049 (3)0.075 (4)0.069 (3)0.013 (4)0.019 (2)0.020 (4)
Cd10.04711 (18)0.04536 (16)0.04917 (17)0.0017 (2)0.01472 (12)0.0109 (2)
N10.051 (2)0.042 (3)0.0419 (19)0.0003 (15)0.0143 (16)0.0038 (15)
N20.046 (2)0.0389 (19)0.036 (2)0.0045 (17)0.0089 (17)0.0002 (16)
N30.046 (2)0.049 (2)0.046 (2)0.0052 (17)0.0088 (17)0.0023 (18)
N40.085 (4)0.044 (3)0.074 (3)0.007 (3)0.025 (3)0.001 (2)
N50.072 (3)0.059 (4)0.055 (2)0.005 (2)0.026 (2)0.011 (2)
N60.041 (2)0.043 (2)0.050 (2)0.0024 (16)0.0136 (17)0.0030 (17)
S10.0718 (11)0.0883 (12)0.0750 (11)0.0273 (9)0.0203 (8)0.0011 (9)
S20.0666 (9)0.1010 (12)0.0424 (7)0.0002 (8)0.0160 (6)0.0019 (7)
Geometric parameters (Å, º) top
C1—C51.367 (8)C11—H11B0.9600
C1—C31.398 (9)C11—H11C0.9600
C1—H10.9300C12—N41.152 (8)
C2—C161.335 (11)C12—S11.611 (7)
C2—C31.429 (9)C13—N51.141 (6)
C2—H20.9300C13—S21.624 (6)
C3—C41.396 (7)C14—N11.335 (6)
C4—N21.350 (6)C14—C191.375 (8)
C4—C151.444 (7)C14—H140.9300
C5—C61.407 (7)C15—N11.346 (6)
C5—H50.9300C15—C171.416 (7)
C6—N21.316 (7)C16—C171.429 (8)
C6—N61.395 (7)C16—H160.9300
C7—C91.348 (7)C17—C181.395 (8)
C7—N61.380 (6)C18—C191.368 (9)
C7—C81.496 (8)C18—H180.9300
C8—H8A0.9600C19—H190.9300
C8—H8B0.9600Cd1—N52.148 (4)
C8—H8C0.9600Cd1—N42.174 (5)
C9—C101.396 (8)Cd1—N22.286 (4)
C9—H90.9300Cd1—N32.310 (4)
C10—N31.317 (6)Cd1—N12.350 (4)
C10—C111.486 (7)N3—N61.377 (5)
C11—H11A0.9600
C5—C1—C3121.5 (5)N1—C14—H14118.0
C5—C1—H1119.3C19—C14—H14118.0
C3—C1—H1119.3N1—C15—C17122.6 (5)
C16—C2—C3121.0 (6)N1—C15—C4118.8 (4)
C16—C2—H2119.5C17—C15—C4118.6 (4)
C3—C2—H2119.5C2—C16—C17121.8 (6)
C4—C3—C1116.0 (5)C2—C16—H16119.1
C4—C3—C2119.3 (6)C17—C16—H16119.1
C1—C3—C2124.7 (6)C18—C17—C15117.1 (5)
N2—C4—C3122.3 (5)C18—C17—C16123.9 (5)
N2—C4—C15117.5 (4)C15—C17—C16119.0 (5)
C3—C4—C15120.2 (4)C19—C18—C17120.1 (5)
C1—C5—C6118.6 (5)C19—C18—H18120.0
C1—C5—H5120.7C17—C18—H18120.0
C6—C5—H5120.7C18—C19—C14118.6 (6)
N2—C6—N6115.2 (5)C18—C19—H19120.7
N2—C6—C5120.7 (5)C14—C19—H19120.7
N6—C6—C5124.1 (5)N5—Cd1—N4104.40 (19)
C9—C7—N6106.7 (5)N5—Cd1—N2130.96 (16)
C9—C7—C8128.0 (5)N4—Cd1—N2124.53 (18)
N6—C7—C8125.4 (5)N5—Cd1—N3103.47 (16)
C7—C8—H8A109.5N4—Cd1—N399.06 (19)
C7—C8—H8B109.5N2—Cd1—N368.42 (14)
H8A—C8—H8B109.5N5—Cd1—N1103.92 (15)
C7—C8—H8C109.5N4—Cd1—N1101.66 (18)
H8A—C8—H8C109.5N2—Cd1—N171.66 (14)
H8B—C8—H8C109.5N3—Cd1—N1140.03 (13)
C7—C9—C10106.7 (5)C14—N1—C15117.5 (4)
C7—C9—H9126.7C14—N1—Cd1127.8 (3)
C10—C9—H9126.7C15—N1—Cd1114.7 (3)
N3—C10—C9111.1 (5)C6—N2—C4120.8 (4)
N3—C10—C11119.5 (5)C6—N2—Cd1121.7 (3)
C9—C10—C11129.4 (5)C4—N2—Cd1117.4 (3)
C10—C11—H11A109.5C10—N3—N6105.5 (4)
C10—C11—H11B109.5C10—N3—Cd1136.8 (4)
H11A—C11—H11B109.5N6—N3—Cd1117.3 (3)
C10—C11—H11C109.5C12—N4—Cd1158.7 (5)
H11A—C11—H11C109.5C13—N5—Cd1171.3 (4)
H11B—C11—H11C109.5N3—N6—C7110.0 (4)
N4—C12—S1178.4 (6)N3—N6—C6117.1 (4)
N5—C13—S2177.3 (5)C7—N6—C6132.9 (4)
N1—C14—C19124.1 (5)
C5—C1—C3—C41.3 (8)C5—C6—N2—Cd1176.5 (4)
C5—C1—C3—C2179.8 (6)C3—C4—N2—C61.2 (7)
C16—C2—C3—C40.7 (9)C15—C4—N2—C6179.6 (4)
C16—C2—C3—C1179.5 (6)C3—C4—N2—Cd1178.6 (4)
C1—C3—C4—N22.2 (7)C15—C4—N2—Cd13.0 (5)
C2—C3—C4—N2178.8 (5)N5—Cd1—N2—C688.0 (4)
C1—C3—C4—C15179.4 (5)N4—Cd1—N2—C687.5 (4)
C2—C3—C4—C150.5 (7)N3—Cd1—N2—C61.3 (4)
C3—C1—C5—C60.5 (9)N1—Cd1—N2—C6179.2 (4)
C1—C5—C6—N21.6 (8)N5—Cd1—N2—C494.6 (4)
C1—C5—C6—N6179.3 (5)N4—Cd1—N2—C489.9 (4)
N6—C7—C9—C100.8 (6)N3—Cd1—N2—C4176.1 (4)
C8—C7—C9—C10179.3 (5)N1—Cd1—N2—C41.9 (3)
C7—C9—C10—N31.3 (6)C9—C10—N3—N61.3 (6)
C7—C9—C10—C11179.4 (5)C11—C10—N3—N6179.3 (4)
N2—C4—C15—N12.6 (6)C9—C10—N3—Cd1170.8 (4)
C3—C4—C15—N1179.0 (4)C11—C10—N3—Cd18.6 (8)
N2—C4—C15—C17179.2 (4)N5—Cd1—N3—C1046.2 (5)
C3—C4—C15—C170.8 (6)N4—Cd1—N3—C1061.1 (5)
C3—C2—C16—C171.2 (10)N2—Cd1—N3—C10175.3 (6)
N1—C15—C17—C181.0 (7)N1—Cd1—N3—C10178.4 (4)
C4—C15—C17—C18179.2 (4)N5—Cd1—N3—N6125.2 (3)
N1—C15—C17—C16179.3 (5)N4—Cd1—N3—N6127.5 (3)
C4—C15—C17—C161.2 (7)N2—Cd1—N3—N63.8 (3)
C2—C16—C17—C18178.9 (6)N1—Cd1—N3—N66.9 (4)
C2—C16—C17—C151.5 (9)S1—C12—N4—Cd1177 (100)
C15—C17—C18—C190.4 (8)N5—Cd1—N4—C12114.8 (14)
C16—C17—C18—C19179.1 (5)N2—Cd1—N4—C1261.7 (15)
C17—C18—C19—C141.3 (9)N3—Cd1—N4—C128.2 (14)
N1—C14—C19—C180.9 (9)N1—Cd1—N4—C12137.4 (14)
C19—C14—N1—C150.6 (7)S2—C13—N5—Cd184 (11)
C19—C14—N1—Cd1180.0 (4)N4—Cd1—N5—C1361 (3)
C17—C15—N1—C141.5 (6)N2—Cd1—N5—C13115 (3)
C4—C15—N1—C14179.7 (4)N3—Cd1—N5—C1342 (3)
C17—C15—N1—Cd1179.0 (3)N1—Cd1—N5—C13167 (3)
C4—C15—N1—Cd10.9 (5)C10—N3—N6—C70.8 (5)
N5—Cd1—N1—C1449.9 (4)Cd1—N3—N6—C7173.1 (3)
N4—Cd1—N1—C1458.3 (4)C10—N3—N6—C6179.9 (4)
N2—Cd1—N1—C14178.9 (4)Cd1—N3—N6—C66.1 (5)
N3—Cd1—N1—C14178.0 (3)C9—C7—N6—N30.0 (5)
N5—Cd1—N1—C15129.5 (3)C8—C7—N6—N3180.0 (5)
N4—Cd1—N1—C15122.3 (3)C9—C7—N6—C6179.1 (5)
N2—Cd1—N1—C150.5 (3)C8—C7—N6—C60.9 (9)
N3—Cd1—N1—C152.5 (4)N2—C6—N6—N34.9 (6)
N6—C6—N2—C4178.6 (4)C5—C6—N6—N3172.8 (5)
C5—C6—N2—C40.8 (7)N2—C6—N6—C7174.1 (5)
N6—C6—N2—Cd11.4 (6)C5—C6—N6—C78.1 (9)

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C17H14N4)]
Mr502.88
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)7.7324 (15), 14.811 (3), 8.7150 (17)
β (°) 104.006 (2)
V3)968.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.25 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.727, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
5622, 3971, 3695
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.082, 1.03
No. of reflections3971
No. of parameters255
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 0.38
Absolute structureFlack (1983), 1803 Friedel pairs
Absolute structure parameter0.03 (3)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N52.148 (4)Cd1—N32.310 (4)
Cd1—N42.174 (5)Cd1—N12.350 (4)
Cd1—N22.286 (4)
N5—Cd1—N4104.40 (19)N2—Cd1—N368.42 (14)
N5—Cd1—N2130.96 (16)N5—Cd1—N1103.92 (15)
N4—Cd1—N2124.53 (18)N4—Cd1—N1101.66 (18)
N5—Cd1—N3103.47 (16)N2—Cd1—N171.66 (14)
N4—Cd1—N399.06 (19)N3—Cd1—N1140.03 (13)
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 20971080).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds