metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N,N,N′,N′-Tetra­kis(benzimidazol-2-yl­meth­yl)ethane-1,2-di­amine]copper(II) sulfate monohydrate

aSchool of Chemical Engineering and Food Science, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: blueice8250@yahoo.com.cn

(Received 29 September 2009; accepted 22 October 2009; online 28 October 2009)

In the title compound, [Cu(C34H32N10)]SO4·H2O, the CuII ion is coordinated by six N atoms of a hexa­dentate N,N,N′,N′-tetra­kis(benzimidazol-2-ylmeth­yl)ethane-1,2-diamine (EDTB) ligand, in a distorted octa­hedral environment. In the crystal structure, inter­molecular N—H⋯O and weak C—H⋯O hydrogen bonds connect the cations, anions and water mol­ecules into a three-dimensional network. The O atoms of the anion are disordered over two sites with refined occupancies of 0.711 (2) and 0.289 (2).

Related literature

For background information on Cu(II) complexes of benz­imidazole, see: Liao et al. (2001[Liao, Z.-R., Zhen, X.-F., Luo, B.-S., Shen, L.-R., Li, D.-F., Liu, H.-L. & Zhao, W. (2001). Polyhedron, 20, 2813-2821.]); Qiu et al. (2005[Qiu, J.-H., Liao, Z.-R., Meng, X.-G., Zhu, L., Wang, Z.-M. & Yu, K.-B. (2005). Polyhedron, 24, 11617-1623.]). For background to EDTB complexes, see: Chen et al. (2004[Chen, Z.-F., Liao, Z.-R., Li, D.-F., Li, W.-K. & Meng, X.-G. (2004). J. Inorg. Biochem. 98, 1315-1318.]); Liu et al. (2003[Liu, Y.-C., Ma, J.-F., Hu, N.-H. & Jia, H.-Q. (2003). Acta Cryst. E59, m361-m363.]); Yang et al. (2003[Yang, J., Ma, J.-F. & Liu, Y.-C. (2003). J. Mol. Struct. 646, 55-60.]). For the synthesis of EDTB, see: Hendriks et al. (1982[Hendriks, H. M. J., Birker, P. J. M. W. L., Rijn, J., Verschoor, G. C. & Reedijk, J. (1982). J. Am. Chem. Soc. 104, 3607-3617.]). For the treatment of the disordered solvent, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). For related structures, see: Athimoolam et al. (2005[Athimoolam, S., Kumar, J., Ramakrishnan, V. & Rajaram, R. K. (2005). Acta Cryst. E61, m2014-m2017.]); Cox et al. (2003[Cox, P. J., Kumarasamy, Y., Nahar, L., Sarker, S. D. & Shoeb, M. (2003). Acta Cryst. E59, o975-o977.]); Mohamed et al. (2003[Mohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). Acta Cryst. C59, m84-m86.]); Stähler et al. (2001[Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26-27.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C34H32N10)]SO4·H2O

  • Mr = 758.33

  • Orthorhombic, P 21 21 21

  • a = 11.2955 (8) Å

  • b = 14.4622 (10) Å

  • c = 23.9698 (16) Å

  • V = 3915.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 292 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.876, Tmax = 0.876

  • 24117 measured reflections

  • 6894 independent reflections

  • 4146 reflections with I > 2σ(I)

  • Rint = 0.123

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.124

  • S = 0.86

  • 6894 reflections

  • 504 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3025 Friedel pairs

  • Flack parameter: 0.011 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O1i 0.86 1.87 2.730 (12) 174
C16—H16⋯O1 0.93 2.59 3.498 (13) 167
N10—H10⋯O3ii 0.86 1.88 2.699 (8) 158
N8—H8A⋯O4iii 0.86 1.91 2.747 (12) 162
N6—H6A⋯O1W 0.86 1.90 2.743 (10) 167
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Cu(II) complexes of benzimidazole rich ligands have been widely studied in recent years (Liao et al., 2001; Qiu et al., 2005). Several EDTB-metal model compounds have already been reported (Liu et al., 2003; Chen et al., 2004), and the title compound, (I), is part of our effort in this area of research. Herein we report the crystal structure of (I).

In the molecular structure of (I), the CuII ion is coordinated by four benzimidazole(bzim) N atoms and two amino N atoms of EDTB, forming a distorted octahedral coordination environmemt (Fig.1). Two bzim-N atoms (N3 and N7) occupy the axial positions, the other two bzim-N atoms (N5 and N9) and two amino N atoms(N1 and N2) are located in the equatorial plane. This configuration can be compared with [Cu(EDTB)].2Tos.4H2O.C2H5OH (Tos = 4-methyl-benzene-sulfonate)(Yang et al., 2003). In the crystal structure, intermolecular N—H···O and weak C-H···O hydrogen bonds form a three-dimensional network (Table 1 and Fig.2).

Related literature top

For background information on Cu(II) complexes of benzimidazole, see: Liao et al. (2001); Qiu et al. (2005). For background to EDTB complexes, see: Chen et al. (2004); Liu et al. (2003) Yang et al. (2003). For the synthesis of EDTB, see: Hendriks et al. (1982). For the treatment of the disordered solvent, see: Spek (2009). For related structures, see: Athimoolam et al. (2005); Cox et al. (2003); Mohamed et al. (2003); Stähler et al. (2001).

Experimental top

All reagants and slvents were used as obtained without further purification. EDTB was synthesized according to the literature (Hendriks et al.,1982). CuSO4.5H2O (1 mmol, 0.25 g) was dissolved in water (5 mL), and EDTB (1 mmol, 0.58 g) was dissolved in ethanol (40 mL), then the two solutions were mixed and stirred at 333 k for 8 h. The solution was filtered, and the resulting blue precipitate was dissolved in aqueous glycol solution. The green crystals which were formed were obtained after two months. Elemental analysis calculated (with glycol included): C 52.66, H 4.88, N 17.06 %; found: C 52.76, H 4.99, N 16.94 %.

Refinement top

All H atoms bonded to C atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(C). H atoms bonded to N atoms were first found the difference map and then fixed at their ideal positions with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N). Water H atoms were refined with distance restraints of O—H = 0.85 (1) Å, H···H = 1.39 (1)Å and Uiso(H) = 1.5Ueq(O). The sulfate O atoms O1—O4 are disordered over two positions with the final occupancies being 0.711 (2):0.289 (2) for the major and minor components, respectively. The DFIX command (Sheldrick, 2008) was used in the refinement to restrain the S—O bond lengths. During the refinement of the structure, electron-density peaks were located that were believed to be highly disordered solvent molecules (glycol). Attempts made to model the solvent molecules were not successful. The SQUEEZE option in PLATON (Spek, 2009) indicated there was a solvent cavity of volume 682.4 Å3 containing approximately 121 electrons, i.e. four glycol solvent molecules (per cell), which is also corroborated by CHN analysis on a Perkin-Elmer 240C elemental analyzer, i.e. calculated: C 52.66, H 4.88, N 17.06 %; found: C 52.76, H 4.99, N 16.94 %. i.e. every [Cu(EDTB)](SO4).H2O unit has a glycol solvent molecule, so the whole suitable formula shoud be [Cu(EDTB)(SO4).C2H6O2.H2O. In the final cycles of refinement, this contribution to the electron density was removed from the observed data. The density, the F(000) value, the molecular weight and the formula are given without taking into account the results obtained with SQUEEZE PLATON (Spek, 2009). For a similar treatment of disordered solvent molecules see: Stähler et al. (2001); Cox et al. (2003); Mohamed et al. (2003); Athimoolam et al. (2005).

Structure description top

Cu(II) complexes of benzimidazole rich ligands have been widely studied in recent years (Liao et al., 2001; Qiu et al., 2005). Several EDTB-metal model compounds have already been reported (Liu et al., 2003; Chen et al., 2004), and the title compound, (I), is part of our effort in this area of research. Herein we report the crystal structure of (I).

In the molecular structure of (I), the CuII ion is coordinated by four benzimidazole(bzim) N atoms and two amino N atoms of EDTB, forming a distorted octahedral coordination environmemt (Fig.1). Two bzim-N atoms (N3 and N7) occupy the axial positions, the other two bzim-N atoms (N5 and N9) and two amino N atoms(N1 and N2) are located in the equatorial plane. This configuration can be compared with [Cu(EDTB)].2Tos.4H2O.C2H5OH (Tos = 4-methyl-benzene-sulfonate)(Yang et al., 2003). In the crystal structure, intermolecular N—H···O and weak C-H···O hydrogen bonds form a three-dimensional network (Table 1 and Fig.2).

For background information on Cu(II) complexes of benzimidazole, see: Liao et al. (2001); Qiu et al. (2005). For background to EDTB complexes, see: Chen et al. (2004); Liu et al. (2003) Yang et al. (2003). For the synthesis of EDTB, see: Hendriks et al. (1982). For the treatment of the disordered solvent, see: Spek (2009). For related structures, see: Athimoolam et al. (2005); Cox et al. (2003); Mohamed et al. (2003); Stähler et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. Thin dashed lines indicate hydrogen bonds and the thick dashed lines indicate the minor component of disorder in the anion.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines.
N,N,N',N'-Tetrakis(benzimidazol-2- ylmethyl)ethane-1,2-diamine top
Crystal data top
[Cu(C34H32N10)]SO4·H2OF(000) = 1572
Mr = 758.33Dx = 1.286 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2277 reflections
a = 11.2955 (8) Åθ = 2.3–16.6°
b = 14.4622 (10) ŵ = 0.66 mm1
c = 23.9698 (16) ÅT = 292 K
V = 3915.7 (5) Å3Block, blue
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6894 independent reflections
Radiation source: fine-focus sealed tube4146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.123
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.876, Tmax = 0.876k = 1617
24117 measured reflectionsl = 2824
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max < 0.001
6894 reflectionsΔρmax = 0.33 e Å3
504 parametersΔρmin = 0.29 e Å3
8 restraintsAbsolute structure: Flack (1983), 3025 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (18)
Crystal data top
[Cu(C34H32N10)]SO4·H2OV = 3915.7 (5) Å3
Mr = 758.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.2955 (8) ŵ = 0.66 mm1
b = 14.4622 (10) ÅT = 292 K
c = 23.9698 (16) Å0.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6894 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4146 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.876Rint = 0.123
24117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124Δρmax = 0.33 e Å3
S = 0.86Δρmin = 0.29 e Å3
6894 reflectionsAbsolute structure: Flack (1983), 3025 Friedel pairs
504 parametersAbsolute structure parameter: 0.011 (18)
8 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.41029 (6)0.06897 (4)0.67483 (3)0.0402 (2)
C10.5321 (6)0.1163 (4)0.7197 (3)0.0545 (18)
H1A0.60170.08600.73480.065*
H1B0.54820.18210.71760.065*
C20.4268 (6)0.0993 (4)0.7578 (3)0.0529 (17)
H2A0.35810.13100.74290.063*
H2B0.44350.12500.79430.063*
C30.4885 (5)0.0437 (4)0.7989 (3)0.0567 (18)
H3A0.44830.08400.82510.068*
H3B0.53150.00240.82010.068*
C40.5726 (5)0.0984 (4)0.7658 (3)0.0419 (15)
C50.7267 (6)0.1826 (4)0.7440 (3)0.0432 (16)
C60.8317 (5)0.2358 (4)0.7412 (3)0.0536 (18)
H60.88280.23880.77160.064*
C70.8567 (6)0.2829 (4)0.6930 (3)0.0609 (19)
H70.92460.31900.69050.073*
C80.7806 (6)0.2762 (4)0.6483 (3)0.0519 (17)
H80.79970.30820.61590.062*
C90.6757 (5)0.2239 (4)0.6489 (3)0.0435 (15)
H90.62660.22050.61780.052*
C100.6489 (5)0.1778 (3)0.6976 (3)0.0391 (15)
C110.2773 (6)0.0178 (4)0.7808 (3)0.0525 (18)
H11A0.26920.01040.82080.063*
H11B0.22290.02440.76250.063*
C120.2497 (6)0.1153 (5)0.7644 (3)0.0510 (17)
C130.1756 (6)0.2585 (5)0.7633 (3)0.0548 (17)
C140.1185 (6)0.3424 (5)0.7727 (3)0.068 (2)
H140.06940.35100.80340.081*
C150.1372 (6)0.4103 (5)0.7355 (4)0.070 (2)
H150.10170.46770.74110.084*
C160.2068 (6)0.3970 (4)0.6900 (3)0.066 (2)
H160.21520.44560.66490.079*
C170.2669 (6)0.3141 (4)0.6788 (3)0.0576 (17)
H170.31470.30670.64750.069*
C180.2503 (5)0.2434 (4)0.7176 (3)0.0457 (16)
C190.4289 (5)0.1352 (4)0.6300 (3)0.0528 (17)
H19A0.42480.19700.64550.063*
H19B0.46010.14000.59240.063*
C200.3083 (5)0.0949 (4)0.6279 (2)0.0441 (16)
C210.1152 (5)0.0807 (4)0.6074 (2)0.0503 (16)
C220.0023 (6)0.0876 (6)0.5883 (3)0.067 (2)
H220.02330.13950.56880.080*
C230.0703 (5)0.0169 (6)0.5986 (3)0.068 (2)
H230.14820.02100.58620.082*
C240.0362 (5)0.0618 (6)0.6265 (3)0.069 (2)
H240.09100.10860.63290.083*
C250.0780 (5)0.0718 (4)0.6451 (2)0.0514 (15)
H250.10160.12480.66400.062*
C260.1573 (5)0.0002 (4)0.6347 (2)0.0403 (14)
C270.6134 (5)0.0561 (4)0.6309 (2)0.0482 (16)
H27A0.64520.11070.61270.058*
H27B0.67390.03060.65520.058*
C280.5758 (5)0.0144 (4)0.5882 (2)0.0427 (15)
C290.5699 (5)0.0998 (4)0.5127 (3)0.0465 (16)
C300.5874 (7)0.1418 (5)0.4609 (3)0.0681 (19)
H300.64510.12110.43620.082*
C310.5166 (8)0.2137 (6)0.4484 (3)0.088 (3)
H310.52640.24460.41470.106*
C320.4303 (8)0.2421 (5)0.4847 (3)0.078 (2)
H320.38180.29110.47430.094*
C330.4121 (6)0.2014 (4)0.5360 (3)0.0593 (17)
H330.35380.22250.56020.071*
C340.4840 (5)0.1282 (4)0.5497 (2)0.0419 (15)
S10.2921 (2)0.62535 (16)0.56513 (9)0.0726 (6)
N10.3999 (5)0.0027 (3)0.76355 (19)0.0453 (12)
N20.5068 (4)0.0799 (3)0.66312 (19)0.0429 (12)
N30.5531 (4)0.1224 (3)0.7127 (2)0.0397 (12)
N40.6752 (4)0.1328 (3)0.7848 (2)0.0494 (13)
H40.70360.12440.81770.059*
N50.2998 (4)0.1544 (3)0.7202 (2)0.0458 (13)
N60.1771 (5)0.1751 (4)0.7923 (2)0.0619 (15)
H6A0.13900.16330.82250.074*
N70.2783 (4)0.0116 (3)0.64646 (19)0.0421 (12)
N80.2130 (5)0.1385 (4)0.6043 (2)0.0620 (16)
H8A0.21360.19290.58990.074*
N90.4898 (4)0.0749 (3)0.59723 (18)0.0396 (11)
N100.6270 (4)0.0264 (4)0.5393 (2)0.0547 (15)
H100.68500.00530.52610.066*
O10.2192 (9)0.6036 (9)0.6143 (4)0.091 (4)0.711 (16)
O20.4106 (11)0.6476 (11)0.5839 (8)0.106 (5)0.711 (16)
O30.2917 (7)0.5505 (6)0.5278 (4)0.083 (4)0.711 (16)
O40.2360 (9)0.7064 (6)0.5391 (4)0.123 (5)0.711 (16)
O1'0.2411 (16)0.6240 (16)0.5109 (5)0.080 (9)0.289 (16)
O3'0.229 (2)0.6638 (19)0.6090 (8)0.083 (8)0.289 (16)
O2'0.337 (3)0.5324 (12)0.5775 (16)0.179 (15)0.289 (16)
O4'0.393 (3)0.688 (3)0.565 (2)0.148 (18)0.289 (16)
O1W0.0258 (8)0.1349 (7)0.8784 (4)0.179 (4)
H1WA0.022 (11)0.160 (9)0.918 (5)0.214*
H1WB0.003 (12)0.072 (9)0.871 (6)0.214*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0338 (4)0.0439 (4)0.0430 (4)0.0025 (4)0.0032 (4)0.0025 (4)
C10.051 (4)0.047 (4)0.066 (5)0.003 (3)0.007 (4)0.025 (3)
C20.050 (4)0.053 (4)0.056 (4)0.017 (3)0.003 (4)0.025 (3)
C30.045 (4)0.071 (5)0.054 (4)0.004 (3)0.008 (3)0.012 (4)
C40.040 (4)0.040 (3)0.046 (4)0.000 (3)0.007 (3)0.003 (3)
C50.052 (4)0.033 (3)0.045 (4)0.007 (3)0.001 (3)0.008 (3)
C60.030 (4)0.063 (4)0.069 (5)0.002 (3)0.018 (3)0.011 (4)
C70.043 (4)0.062 (4)0.078 (6)0.009 (3)0.004 (4)0.002 (4)
C80.053 (4)0.045 (4)0.057 (4)0.011 (3)0.014 (4)0.000 (3)
C90.046 (4)0.039 (3)0.046 (4)0.001 (3)0.001 (3)0.003 (3)
C100.039 (4)0.030 (3)0.049 (4)0.004 (3)0.005 (3)0.003 (3)
C110.060 (5)0.051 (4)0.047 (4)0.022 (3)0.012 (4)0.007 (3)
C120.047 (4)0.067 (5)0.039 (4)0.006 (4)0.010 (3)0.007 (4)
C130.055 (4)0.056 (4)0.053 (4)0.003 (4)0.004 (4)0.011 (4)
C140.039 (4)0.086 (5)0.078 (6)0.005 (4)0.005 (4)0.031 (5)
C150.069 (5)0.054 (5)0.087 (6)0.004 (4)0.006 (4)0.015 (5)
C160.071 (5)0.049 (4)0.078 (6)0.004 (4)0.032 (5)0.001 (4)
C170.069 (5)0.061 (4)0.043 (4)0.005 (4)0.016 (4)0.002 (4)
C180.048 (4)0.047 (4)0.042 (4)0.008 (3)0.016 (3)0.011 (3)
C190.037 (4)0.037 (3)0.084 (5)0.001 (3)0.009 (4)0.007 (3)
C200.038 (4)0.042 (4)0.052 (4)0.007 (3)0.009 (3)0.006 (3)
C210.038 (4)0.058 (4)0.055 (4)0.007 (3)0.007 (3)0.000 (3)
C220.036 (4)0.092 (6)0.073 (5)0.013 (4)0.013 (4)0.011 (4)
C230.022 (4)0.110 (6)0.072 (5)0.006 (4)0.012 (4)0.011 (5)
C240.036 (4)0.094 (5)0.079 (5)0.011 (4)0.006 (4)0.009 (5)
C250.039 (3)0.051 (3)0.064 (4)0.005 (4)0.008 (3)0.009 (3)
C260.036 (4)0.048 (4)0.037 (3)0.003 (3)0.005 (3)0.002 (3)
C270.038 (4)0.050 (4)0.057 (4)0.003 (3)0.000 (3)0.004 (3)
C280.034 (4)0.053 (4)0.041 (4)0.006 (3)0.003 (3)0.005 (3)
C290.038 (4)0.052 (4)0.049 (4)0.001 (3)0.013 (3)0.002 (3)
C300.067 (5)0.098 (5)0.039 (4)0.005 (5)0.015 (4)0.002 (4)
C310.085 (6)0.131 (7)0.048 (5)0.012 (6)0.005 (5)0.040 (5)
C320.100 (7)0.087 (5)0.048 (5)0.040 (5)0.014 (5)0.007 (4)
C330.052 (4)0.075 (5)0.051 (4)0.006 (4)0.001 (4)0.001 (4)
C340.036 (4)0.053 (4)0.036 (4)0.003 (3)0.004 (3)0.002 (3)
S10.0867 (17)0.0730 (14)0.0581 (14)0.0143 (13)0.0084 (13)0.0081 (13)
N10.040 (3)0.042 (3)0.054 (3)0.003 (3)0.005 (3)0.002 (2)
N20.029 (2)0.049 (3)0.050 (3)0.001 (2)0.008 (2)0.006 (3)
N30.030 (3)0.047 (3)0.042 (3)0.010 (2)0.008 (2)0.005 (2)
N40.054 (4)0.053 (3)0.041 (3)0.007 (3)0.017 (3)0.002 (3)
N50.046 (3)0.050 (3)0.042 (3)0.003 (3)0.003 (3)0.005 (3)
N60.053 (4)0.087 (4)0.046 (4)0.003 (3)0.021 (3)0.014 (3)
N70.032 (3)0.037 (3)0.057 (3)0.001 (2)0.003 (3)0.009 (3)
N80.054 (4)0.053 (3)0.079 (4)0.004 (3)0.006 (3)0.024 (3)
N90.032 (3)0.046 (3)0.041 (3)0.006 (3)0.003 (2)0.004 (3)
N100.036 (3)0.082 (4)0.046 (3)0.011 (3)0.005 (3)0.011 (3)
O10.100 (7)0.106 (9)0.065 (6)0.023 (7)0.008 (5)0.005 (6)
O20.094 (8)0.102 (10)0.121 (11)0.044 (8)0.042 (7)0.018 (8)
O30.072 (6)0.090 (7)0.087 (7)0.007 (5)0.003 (5)0.056 (6)
O40.174 (11)0.088 (8)0.106 (8)0.010 (7)0.012 (7)0.014 (6)
O1'0.097 (16)0.08 (2)0.059 (13)0.002 (13)0.010 (11)0.007 (12)
O3'0.095 (17)0.083 (18)0.070 (16)0.022 (16)0.004 (12)0.019 (15)
O2'0.18 (3)0.19 (3)0.17 (4)0.01 (2)0.01 (3)0.00 (2)
O4'0.14 (3)0.15 (4)0.16 (4)0.02 (3)0.00 (3)0.02 (3)
O1W0.129 (7)0.246 (11)0.161 (8)0.030 (7)0.041 (6)0.028 (9)
Geometric parameters (Å, º) top
Cu1—N32.006 (4)C19—C201.482 (8)
Cu1—N72.011 (5)C19—H19A0.9700
Cu1—N52.065 (5)C19—H19B0.9700
Cu1—N92.067 (4)C20—N71.328 (6)
Cu1—N12.369 (4)C20—N81.369 (7)
Cu1—N22.429 (5)C21—C221.358 (8)
C1—N21.483 (7)C21—N81.387 (7)
C1—C21.520 (8)C21—C261.422 (7)
C1—H1A0.9700C22—C231.334 (9)
C1—H1B0.9700C22—H220.9300
C2—N11.436 (7)C23—C241.376 (9)
C2—H2A0.9700C23—H230.9300
C2—H2B0.9700C24—C251.372 (8)
C3—C41.469 (7)C24—H240.9300
C3—N11.472 (7)C25—C261.392 (7)
C3—H3A0.9700C25—H250.9300
C3—H3B0.9700C26—N71.406 (7)
C4—N31.337 (7)C27—N21.472 (6)
C4—N41.341 (7)C27—C281.506 (7)
C5—N41.346 (7)C27—H27A0.9700
C5—C61.415 (8)C27—H27B0.9700
C5—C101.419 (8)C28—N101.319 (6)
C6—C71.372 (8)C28—N91.324 (7)
C6—H60.9300C29—C341.376 (8)
C7—C81.376 (8)C29—N101.395 (7)
C7—H70.9300C29—C301.396 (8)
C8—C91.406 (8)C30—C311.345 (9)
C8—H80.9300C30—H300.9300
C9—C101.379 (7)C31—C321.369 (9)
C9—H90.9300C31—H310.9300
C10—N31.394 (7)C32—C331.378 (8)
C11—N11.475 (7)C32—H320.9300
C11—C121.496 (8)C33—C341.375 (8)
C11—H11A0.9700C33—H330.9300
C11—H11B0.9700C34—N91.378 (7)
C12—N51.330 (7)S1—O3'1.385 (10)
C12—N61.366 (7)S1—O31.405 (6)
C13—N61.391 (7)S1—O1'1.422 (9)
C13—C141.393 (8)S1—O21.449 (8)
C13—C181.401 (8)S1—O4'1.451 (10)
C14—C151.343 (9)S1—O2'1.467 (10)
C14—H140.9300S1—O41.471 (7)
C15—C161.359 (9)S1—O11.472 (7)
C15—H150.9300N4—H40.8600
C16—C171.404 (8)N6—H6A0.8600
C16—H160.9300N8—H8A0.8600
C17—C181.394 (8)N10—H100.8600
C17—H170.9300O1W—H1WA1.02 (12)
C18—N51.405 (7)O1W—H1WB0.98 (12)
C19—N21.430 (6)
N3—Cu1—N7166.55 (19)C22—C23—C24123.5 (6)
N3—Cu1—N590.97 (19)C22—C23—H23118.2
N7—Cu1—N594.41 (19)C24—C23—H23118.2
N3—Cu1—N992.43 (18)C25—C24—C23120.6 (7)
N7—Cu1—N992.39 (18)C25—C24—H24119.7
N5—Cu1—N9135.3 (2)C23—C24—H24119.7
N3—Cu1—N178.56 (18)C24—C25—C26118.0 (6)
N7—Cu1—N190.77 (18)C24—C25—H25121.0
N5—Cu1—N176.09 (18)C26—C25—H25121.0
N9—Cu1—N1147.93 (18)C25—C26—N7132.9 (5)
N3—Cu1—N291.89 (16)C25—C26—C21118.6 (5)
N7—Cu1—N277.29 (16)N7—C26—C21108.5 (5)
N5—Cu1—N2149.57 (17)N2—C27—C28106.5 (4)
N9—Cu1—N274.78 (17)N2—C27—H27A110.4
N1—Cu1—N274.83 (15)C28—C27—H27A110.4
N2—C1—C2109.9 (5)N2—C27—H27B110.4
N2—C1—H1A109.7C28—C27—H27B110.4
C2—C1—H1A109.7H27A—C27—H27B108.6
N2—C1—H1B109.7N10—C28—N9112.4 (5)
C2—C1—H1B109.7N10—C28—C27124.7 (5)
H1A—C1—H1B108.2N9—C28—C27122.9 (5)
N1—C2—C1112.4 (5)C34—C29—N10105.0 (5)
N1—C2—H2A109.1C34—C29—C30122.8 (6)
C1—C2—H2A109.1N10—C29—C30132.2 (6)
N1—C2—H2B109.1C31—C30—C29116.8 (7)
C1—C2—H2B109.1C31—C30—H30121.6
H2A—C2—H2B107.9C29—C30—H30121.6
C4—C3—N1112.0 (5)C30—C31—C32120.9 (7)
C4—C3—H3A109.2C30—C31—H31119.5
N1—C3—H3A109.2C32—C31—H31119.5
C4—C3—H3B109.2C31—C32—C33123.0 (7)
N1—C3—H3B109.2C31—C32—H32118.5
H3A—C3—H3B107.9C33—C32—H32118.5
N3—C4—N4111.6 (5)C34—C33—C32117.0 (6)
N3—C4—C3123.2 (5)C34—C33—H33121.5
N4—C4—C3125.2 (5)C32—C33—H33121.5
N4—C5—C6133.4 (6)C33—C34—C29119.5 (6)
N4—C5—C10105.9 (5)C33—C34—N9131.1 (6)
C6—C5—C10120.6 (6)C29—C34—N9109.4 (5)
C7—C6—C5118.9 (6)O3'—S1—O3142.4 (13)
C7—C6—H6120.6O3'—S1—O1'119.5 (15)
C5—C6—H6120.6O3'—S1—O298.5 (15)
C6—C7—C8119.5 (6)O3—S1—O2111.8 (9)
C6—C7—H7120.3O1'—S1—O2131.4 (11)
C8—C7—H7120.3O3—S1—O4'119 (3)
C7—C8—C9123.8 (6)O1'—S1—O4'109 (2)
C7—C8—H8118.1O3'—S1—O2'113.0 (16)
C9—C8—H8118.1O3—S1—O2'54.8 (15)
C10—C9—C8117.0 (6)O1'—S1—O2'108.2 (17)
C10—C9—H9121.5O2—S1—O2'79.7 (15)
C8—C9—H9121.5O4'—S1—O2'107 (2)
C9—C10—N3131.9 (5)O3—S1—O4110.1 (6)
C9—C10—C5120.3 (5)O2'—S1—O4164.8 (16)
N3—C10—C5107.8 (5)O3—S1—O1110.1 (7)
N1—C11—C12108.2 (5)O1'—S1—O1120.2 (9)
N1—C11—H11A110.1O2—S1—O1108.4 (9)
C12—C11—H11A110.1O4'—S1—O1125 (2)
N1—C11—H11B110.1O2'—S1—O180.5 (13)
C12—C11—H11B110.1O4—S1—O1105.6 (6)
H11A—C11—H11B108.4C2—N1—C3110.8 (5)
N5—C12—N6112.0 (6)C2—N1—C11114.9 (5)
N5—C12—C11121.4 (6)C3—N1—C11112.7 (5)
N6—C12—C11126.5 (6)C2—N1—Cu1109.2 (3)
N6—C13—C14132.9 (7)C3—N1—Cu1106.5 (3)
N6—C13—C18104.4 (6)C11—N1—Cu1102.1 (3)
C14—C13—C18122.7 (7)C19—N2—C27110.0 (5)
C15—C14—C13117.2 (7)C19—N2—C1115.3 (5)
C15—C14—H14121.4C27—N2—C1113.9 (4)
C13—C14—H14121.4C19—N2—Cu1106.5 (3)
C14—C15—C16121.4 (7)C27—N2—Cu1102.8 (3)
C14—C15—H15119.3C1—N2—Cu1107.2 (3)
C16—C15—H15119.3C4—N3—C10105.6 (5)
C15—C16—C17123.7 (7)C4—N3—Cu1117.6 (4)
C15—C16—H16118.2C10—N3—Cu1136.7 (4)
C17—C16—H16118.2C4—N4—C5109.0 (5)
C18—C17—C16115.7 (7)C4—N4—H4125.5
C18—C17—H17122.2C5—N4—H4125.5
C16—C17—H17122.2C12—N5—C18104.9 (5)
C17—C18—C13119.3 (6)C12—N5—Cu1115.0 (4)
C17—C18—N5130.3 (6)C18—N5—Cu1140.0 (4)
C13—C18—N5110.3 (6)C12—N6—C13108.2 (5)
N2—C19—C20111.4 (5)C12—N6—H6A125.9
N2—C19—H19A109.4C13—N6—H6A125.9
C20—C19—H19A109.4C20—N7—C26106.9 (5)
N2—C19—H19B109.4C20—N7—Cu1116.8 (4)
C20—C19—H19B109.4C26—N7—Cu1135.9 (4)
H19A—C19—H19B108.0C20—N8—C21109.1 (5)
N7—C20—N8110.8 (5)C20—N8—H8A125.4
N7—C20—C19125.4 (5)C21—N8—H8A125.4
N8—C20—C19123.8 (5)C28—N9—C34105.6 (5)
C22—C21—N8133.2 (7)C28—N9—Cu1116.0 (4)
C22—C21—C26122.0 (6)C34—N9—Cu1138.3 (4)
N8—C21—C26104.7 (5)C28—N10—C29107.6 (5)
C23—C22—C21117.2 (7)C28—N10—H10126.2
C23—C22—H22121.4C29—N10—H10126.2
C21—C22—H22121.4H1WA—O1W—H1WB119 (10)
N2—C1—C2—N160.5 (7)N1—Cu1—N2—C27135.6 (3)
N1—C3—C4—N316.2 (8)N3—Cu1—N2—C162.4 (4)
N1—C3—C4—N4166.1 (5)N7—Cu1—N2—C1109.5 (4)
N4—C5—C6—C7176.8 (6)N5—Cu1—N2—C132.7 (5)
C10—C5—C6—C70.2 (9)N9—Cu1—N2—C1154.4 (4)
C5—C6—C7—C81.0 (9)N1—Cu1—N2—C115.2 (3)
C6—C7—C8—C90.6 (10)N4—C4—N3—C101.4 (6)
C7—C8—C9—C100.5 (9)C3—C4—N3—C10176.5 (5)
C8—C9—C10—N3178.5 (5)N4—C4—N3—Cu1175.1 (3)
C8—C9—C10—C51.3 (8)C3—C4—N3—Cu16.9 (7)
N4—C5—C10—C9178.7 (5)C9—C10—N3—C4178.3 (6)
C6—C5—C10—C91.0 (8)C5—C10—N3—C41.6 (6)
N4—C5—C10—N31.1 (6)C9—C10—N3—Cu16.2 (9)
C6—C5—C10—N3178.9 (5)C5—C10—N3—Cu1174.0 (4)
N1—C11—C12—N530.3 (8)N7—Cu1—N3—C440.2 (10)
N1—C11—C12—N6147.1 (6)N5—Cu1—N3—C473.4 (4)
N6—C13—C14—C15179.8 (7)N9—Cu1—N3—C4151.1 (4)
C18—C13—C14—C150.2 (10)N1—Cu1—N3—C42.2 (4)
C13—C14—C15—C161.5 (10)N2—Cu1—N3—C476.3 (4)
C14—C15—C16—C171.9 (11)N7—Cu1—N3—C10135.0 (8)
C15—C16—C17—C180.6 (9)N5—Cu1—N3—C10111.4 (5)
C16—C17—C18—C131.0 (8)N9—Cu1—N3—C1024.1 (5)
C16—C17—C18—N5177.3 (6)N1—Cu1—N3—C10173.0 (5)
N6—C13—C18—C17178.8 (5)N2—Cu1—N3—C1098.9 (5)
C14—C13—C18—C171.5 (9)N3—C4—N4—C50.8 (7)
N6—C13—C18—N52.5 (7)C3—C4—N4—C5177.1 (5)
C14—C13—C18—N5177.2 (6)C6—C5—N4—C4177.6 (6)
N2—C19—C20—N79.9 (9)C10—C5—N4—C40.3 (6)
N2—C19—C20—N8172.6 (5)N6—C12—N5—C183.8 (7)
N8—C21—C22—C23179.5 (6)C11—C12—N5—C18178.4 (5)
C26—C21—C22—C233.4 (10)N6—C12—N5—Cu1179.5 (4)
C21—C22—C23—C240.9 (11)C11—C12—N5—Cu12.7 (7)
C22—C23—C24—C250.7 (11)C17—C18—N5—C12177.6 (6)
C23—C24—C25—C260.1 (9)C13—C18—N5—C123.9 (7)
C24—C25—C26—N7178.6 (6)C17—C18—N5—Cu13.6 (10)
C24—C25—C26—C212.4 (8)C13—C18—N5—Cu1177.9 (5)
C22—C21—C26—C254.2 (9)N3—Cu1—N5—C1298.7 (4)
N8—C21—C26—C25178.8 (5)N7—Cu1—N5—C1268.9 (4)
C22—C21—C26—N7176.6 (6)N9—Cu1—N5—C12166.8 (4)
N8—C21—C26—N70.5 (6)N1—Cu1—N5—C1220.8 (4)
N2—C27—C28—N10151.8 (5)N2—Cu1—N5—C123.3 (6)
N2—C27—C28—N931.6 (7)N3—Cu1—N5—C1887.7 (6)
C34—C29—C30—C311.0 (10)N7—Cu1—N5—C18104.7 (6)
N10—C29—C30—C31178.8 (7)N9—Cu1—N5—C186.8 (7)
C29—C30—C31—C321.5 (11)N1—Cu1—N5—C18165.6 (6)
C30—C31—C32—C331.6 (13)N2—Cu1—N5—C18176.9 (5)
C31—C32—C33—C341.1 (11)N5—C12—N6—C132.3 (7)
C32—C33—C34—C290.6 (9)C11—C12—N6—C13180.0 (6)
C32—C33—C34—N9178.6 (6)C14—C13—N6—C12179.5 (7)
N10—C29—C34—C33179.2 (5)C18—C13—N6—C120.2 (7)
C30—C29—C34—C330.6 (9)N8—C20—N7—C260.1 (7)
N10—C29—C34—N90.9 (6)C19—C20—N7—C26177.9 (5)
C30—C29—C34—N9179.0 (5)N8—C20—N7—Cu1173.4 (4)
C1—C2—N1—C373.3 (6)C19—C20—N7—Cu14.4 (8)
C1—C2—N1—C11157.6 (5)C25—C26—N7—C20178.7 (6)
C1—C2—N1—Cu143.6 (6)C21—C26—N7—C200.4 (6)
C4—C3—N1—C2103.5 (6)C25—C26—N7—Cu19.6 (10)
C4—C3—N1—C11126.3 (5)C21—C26—N7—Cu1171.3 (4)
C4—C3—N1—Cu115.1 (6)N3—Cu1—N7—C2047.1 (10)
C12—C11—N1—C2158.9 (5)N5—Cu1—N7—C20160.4 (4)
C12—C11—N1—C372.9 (6)N9—Cu1—N7—C2063.8 (4)
C12—C11—N1—Cu140.9 (5)N1—Cu1—N7—C2084.3 (4)
N3—Cu1—N1—C2109.8 (4)N2—Cu1—N7—C2010.0 (4)
N7—Cu1—N1—C261.9 (4)N3—Cu1—N7—C26141.8 (7)
N5—Cu1—N1—C2156.3 (4)N5—Cu1—N7—C2628.6 (6)
N9—Cu1—N1—C233.8 (6)N9—Cu1—N7—C26107.3 (5)
N2—Cu1—N1—C214.7 (4)N1—Cu1—N7—C26104.7 (5)
N3—Cu1—N1—C39.8 (4)N2—Cu1—N7—C26178.9 (6)
N7—Cu1—N1—C3178.4 (4)N7—C20—N8—C210.2 (7)
N5—Cu1—N1—C384.0 (4)C19—C20—N8—C21177.6 (5)
N9—Cu1—N1—C385.9 (4)C22—C21—N8—C20176.2 (7)
N2—Cu1—N1—C3105.0 (4)C26—C21—N8—C200.4 (6)
N3—Cu1—N1—C11128.2 (4)N10—C28—N9—C341.5 (6)
N7—Cu1—N1—C1160.0 (3)C27—C28—N9—C34178.5 (5)
N5—Cu1—N1—C1134.3 (3)N10—C28—N9—Cu1175.9 (4)
N9—Cu1—N1—C11155.8 (4)C27—C28—N9—Cu11.0 (7)
N2—Cu1—N1—C11136.7 (4)C33—C34—N9—C28179.5 (6)
C20—C19—N2—C27126.3 (5)C29—C34—N9—C281.4 (6)
C20—C19—N2—C1103.2 (5)C33—C34—N9—Cu13.0 (10)
C20—C19—N2—Cu115.6 (6)C29—C34—N9—Cu1175.1 (4)
C28—C27—N2—C1972.6 (6)N3—Cu1—N9—C2871.9 (4)
C28—C27—N2—C1156.1 (4)N7—Cu1—N9—C2895.6 (4)
C28—C27—N2—Cu140.5 (4)N5—Cu1—N9—C28165.7 (4)
C2—C1—N2—C1976.2 (6)N1—Cu1—N9—C280.3 (6)
C2—C1—N2—C27155.2 (5)N2—Cu1—N9—C2819.4 (4)
C2—C1—N2—Cu142.2 (5)N3—Cu1—N9—C34104.4 (6)
N3—Cu1—N2—C19173.6 (4)N7—Cu1—N9—C3488.2 (6)
N7—Cu1—N2—C1914.4 (4)N5—Cu1—N9—C3410.6 (7)
N5—Cu1—N2—C1991.2 (5)N1—Cu1—N9—C34176.6 (5)
N9—Cu1—N2—C1981.6 (4)N2—Cu1—N9—C34164.3 (6)
N1—Cu1—N2—C19108.8 (4)N9—C28—N10—C291.0 (6)
N3—Cu1—N2—C2757.9 (3)C27—C28—N10—C29177.9 (5)
N7—Cu1—N2—C27130.1 (3)C34—C29—N10—C280.0 (6)
N5—Cu1—N2—C27153.1 (4)C30—C29—N10—C28179.9 (6)
N9—Cu1—N2—C2734.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O1i0.861.872.730 (12)174
C16—H16···O10.932.593.498 (13)167
N10—H10···O3ii0.861.882.699 (8)158
N8—H8A···O4iii0.861.912.747 (12)162
N6—H6A···O1W0.861.902.743 (10)167
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C34H32N10)]SO4·H2O
Mr758.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)292
a, b, c (Å)11.2955 (8), 14.4622 (10), 23.9698 (16)
V3)3915.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.876, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
24117, 6894, 4146
Rint0.123
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.124, 0.86
No. of reflections6894
No. of parameters504
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.29
Absolute structureFlack (1983), 3025 Friedel pairs
Absolute structure parameter0.011 (18)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O1i0.861.872.730 (12)173.9
C16—H16···O10.932.593.498 (13)166.5
N10—H10···O3ii0.861.882.699 (8)157.6
N8—H8A···O4iii0.861.912.747 (12)162.3
N6—H6A···O1W0.861.902.743 (10)167.3
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1; (iii) x, y1, z.
 

Acknowledgements

The authors are grateful to the Science Technology Research Programme of the Education Office of Hubei Province (grant No. Q20092503) for financial support.

References

First citationAthimoolam, S., Kumar, J., Ramakrishnan, V. & Rajaram, R. K. (2005). Acta Cryst. E61, m2014–m2017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-F., Liao, Z.-R., Li, D.-F., Li, W.-K. & Meng, X.-G. (2004). J. Inorg. Biochem. 98, 1315–1318.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCox, P. J., Kumarasamy, Y., Nahar, L., Sarker, S. D. & Shoeb, M. (2003). Acta Cryst. E59, o975–o977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHendriks, H. M. J., Birker, P. J. M. W. L., Rijn, J., Verschoor, G. C. & Reedijk, J. (1982). J. Am. Chem. Soc. 104, 3607–3617.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiao, Z.-R., Zhen, X.-F., Luo, B.-S., Shen, L.-R., Li, D.-F., Liu, H.-L. & Zhao, W. (2001). Polyhedron, 20, 2813–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y.-C., Ma, J.-F., Hu, N.-H. & Jia, H.-Q. (2003). Acta Cryst. E59, m361–m363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). Acta Cryst. C59, m84–m86.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQiu, J.-H., Liao, Z.-R., Meng, X.-G., Zhu, L., Wang, Z.-M. & Yu, K.-B. (2005). Polyhedron, 24, 11617–1623.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F. & Liu, Y.-C. (2003). J. Mol. Struct. 646, 55–60.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds