organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Carbamoylpyridinium perchlorate

aSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: clz1977@sina.com

(Received 14 August 2009; accepted 25 September 2009; online 3 October 2009)

In the cation of the title compound, C6H7N2O+·ClO4, the amide group is oriented at a dihedral angle of 10.41 (17)° to the benzene ring. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonding.

Related literature

For general background to structural features and physical properties of simple mol­ecular–ionic crystals containing organic cations and acid radicals (1:1 molar ratio), see: Czupiński et al. (2002[Czupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Świergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497-8512.]); Katrusiak & Szafrański (1999[Katrusiak, A. & Szafrański, M. (1999). Phys. Rev. Lett. 82, 576-579.], 2006[Katrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775-15785.]). For the crystal structure of 4-carbamoylpyridinium dihydrogen phosphate, see: Gholivand et al. (2007[Gholivand, K., Zare, K., Afshar, F., Shariatinia, Z. & Khavasi, H. R. (2007). Acta Cryst. E63, o4027.]) and for that of 3-(amino­carbon­yl)pyridinium perchlorate, see: Athimoolam & Natarajan (2007[Athimoolam, S. & Natarajan, S. (2007). Acta Cryst. C63, o263-o266.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N2O+·ClO4

  • Mr = 222.59

  • Monoclinic, P 21 /c

  • a = 10.935 (2) Å

  • b = 10.082 (2) Å

  • c = 8.2021 (16) Å

  • β = 99.37 (3)°

  • V = 892.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.87, Tmax = 0.90

  • 8863 measured reflections

  • 2033 independent reflections

  • 1421 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.176

  • S = 1.04

  • 2033 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.86 2.10 2.932 (4) 162
N2—H2A⋯O1ii 0.86 2.32 3.162 (4) 168
N2—H2B⋯O5iii 0.86 2.17 3.004 (4) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently much attention has been devoted to simple molecular–ionic crystals containing organic cations and acid radicals (1:1 molar ratio) due to the tunability of their special structural features and their interesting physical properties (Czupiński et al., 2002; Katrusiak & Szafrański, 1999; Katrusiak & Szafrański, 2006). The crystal structures of 4-carbamoylpyridinium dihydrogen phosphate (Gholivand et al., 2007) and 3-(aminocarbonyl)pyridinium perchlorate (Athimoolam & Natarajan, 2007) have been reported previously. In our laboratory, a compound containing 4-carbamoylpyridinium cation and ClO4- anion has been synthesized, its crystal structure is reported herein.

The asymmetric unit of the title compound (Fig. 1) consists of one 4-carbamoylpyridinium cation and one ClO4- anion. The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds (Table 1).

Related literature top

For general background to structural features and physical properties of simple molecular–ionic crystals containing organic cations and acid radicals (1:1 molar ratio), see: Czupiński et al. (2002); Katrusiak & Szafrański (1999, 2006). For the crystal structure of 4-carbamoylpyridinium dihydrogen phosphate, see: Gholivand et al. (2007). For the crystal structure of 3-(aminocarbonyl)pyridinium perchlorate, see: Athimoolam & Natarajan (2007).

Experimental top

4-Carbamoylpyridine (2.44 g, 20 mmol) and 10% aqueous solution (15 ml) of HClO4 were dissolved in 30 ml water. The solution was heated at 343 K for 0.5 h, forming a clear solution. The reaction mixture was cooled slowly to room temperature, block crystals of the title compound were formed.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Recently much attention has been devoted to simple molecular–ionic crystals containing organic cations and acid radicals (1:1 molar ratio) due to the tunability of their special structural features and their interesting physical properties (Czupiński et al., 2002; Katrusiak & Szafrański, 1999; Katrusiak & Szafrański, 2006). The crystal structures of 4-carbamoylpyridinium dihydrogen phosphate (Gholivand et al., 2007) and 3-(aminocarbonyl)pyridinium perchlorate (Athimoolam & Natarajan, 2007) have been reported previously. In our laboratory, a compound containing 4-carbamoylpyridinium cation and ClO4- anion has been synthesized, its crystal structure is reported herein.

The asymmetric unit of the title compound (Fig. 1) consists of one 4-carbamoylpyridinium cation and one ClO4- anion. The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds (Table 1).

For general background to structural features and physical properties of simple molecular–ionic crystals containing organic cations and acid radicals (1:1 molar ratio), see: Czupiński et al. (2002); Katrusiak & Szafrański (1999, 2006). For the crystal structure of 4-carbamoylpyridinium dihydrogen phosphate, see: Gholivand et al. (2007). For the crystal structure of 3-(aminocarbonyl)pyridinium perchlorate, see: Athimoolam & Natarajan (2007).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level.
4-Carbamoylpyridinium perchlorate top
Crystal data top
C6H7N2O+·ClO4F(000) = 456
Mr = 222.59Dx = 1.657 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1421 reflections
a = 10.935 (2) Åθ = 3.2–27.5°
b = 10.082 (2) ŵ = 0.43 mm1
c = 8.2021 (16) ÅT = 293 K
β = 99.37 (3)°Block, colorless
V = 892.2 (3) Å30.30 × 0.25 × 0.22 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2033 independent reflections
Radiation source: fine-focus sealed tube1421 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.87, Tmax = 0.90l = 1010
8863 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0844P)2 + 0.3072P]
where P = (Fo2 + 2Fc2)/3
2033 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C6H7N2O+·ClO4V = 892.2 (3) Å3
Mr = 222.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.935 (2) ŵ = 0.43 mm1
b = 10.082 (2) ÅT = 293 K
c = 8.2021 (16) Å0.30 × 0.25 × 0.22 mm
β = 99.37 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2033 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1421 reflections with I > 2σ(I)
Tmin = 0.87, Tmax = 0.90Rint = 0.074
8863 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
2033 reflectionsΔρmin = 0.42 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35049 (7)0.39747 (7)0.09900 (9)0.0473 (3)
O50.0368 (2)0.8048 (2)0.2309 (3)0.0650 (7)
N20.0251 (3)0.5945 (3)0.1873 (4)0.0698 (10)
H2A0.08620.61690.11270.084*
H2B0.01280.51230.21300.084*
C60.0493 (3)0.6856 (3)0.2619 (4)0.0463 (7)
C40.2469 (3)0.7332 (3)0.4470 (4)0.0479 (8)
H4A0.23860.82050.41040.057*
N10.3573 (2)0.5717 (3)0.6122 (3)0.0541 (8)
H1A0.42180.54920.68130.065*
C30.1569 (2)0.6406 (3)0.3883 (3)0.0399 (7)
O40.4364 (2)0.2906 (2)0.1204 (3)0.0707 (8)
O30.3944 (2)0.4992 (2)0.2176 (3)0.0653 (7)
C20.1692 (3)0.5117 (3)0.4485 (4)0.0457 (8)
H2C0.10960.44790.41170.055*
C50.3479 (3)0.6961 (4)0.5590 (4)0.0549 (9)
H5A0.40940.75750.59730.066*
O20.3407 (3)0.4505 (3)0.0636 (3)0.0843 (9)
O10.2315 (2)0.3517 (3)0.1231 (4)0.0759 (8)
C10.2713 (3)0.4798 (3)0.5636 (4)0.0536 (9)
H1B0.28030.39450.60720.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0405 (5)0.0430 (5)0.0519 (5)0.0012 (3)0.0116 (3)0.0000 (3)
O50.0581 (15)0.0403 (14)0.0867 (19)0.0094 (11)0.0176 (12)0.0095 (12)
N20.0575 (19)0.0488 (18)0.087 (2)0.0020 (13)0.0377 (17)0.0116 (15)
C60.0397 (17)0.0405 (18)0.0548 (19)0.0032 (13)0.0039 (13)0.0050 (14)
C40.0466 (18)0.0361 (16)0.057 (2)0.0056 (13)0.0036 (14)0.0033 (13)
N10.0460 (16)0.0565 (18)0.0509 (17)0.0061 (12)0.0187 (13)0.0010 (12)
C30.0346 (16)0.0371 (15)0.0448 (17)0.0021 (11)0.0030 (12)0.0012 (12)
O40.0550 (15)0.0510 (15)0.097 (2)0.0147 (11)0.0145 (14)0.0040 (13)
O30.0595 (16)0.0570 (15)0.0721 (17)0.0015 (11)0.0110 (12)0.0208 (12)
C20.0469 (18)0.0319 (15)0.0520 (19)0.0018 (12)0.0109 (14)0.0034 (12)
C50.0438 (19)0.055 (2)0.060 (2)0.0120 (15)0.0079 (15)0.0007 (16)
O20.106 (2)0.087 (2)0.0518 (17)0.0028 (17)0.0107 (15)0.0126 (14)
O10.0434 (15)0.0839 (19)0.096 (2)0.0120 (13)0.0021 (13)0.0088 (16)
C10.060 (2)0.0381 (17)0.055 (2)0.0063 (15)0.0145 (16)0.0002 (14)
Geometric parameters (Å, º) top
Cl1—O41.421 (2)C4—C31.385 (4)
Cl1—O21.424 (3)C4—H4A0.9300
Cl1—O11.425 (3)N1—C51.327 (4)
Cl1—O31.441 (2)N1—C11.334 (4)
O5—C61.231 (3)N1—H1A0.8600
N2—C61.310 (4)C3—C21.389 (4)
N2—H2A0.8600C2—C11.377 (4)
N2—H2B0.8600C2—H2C0.9300
C6—C31.507 (4)C5—H5A0.9300
C4—C51.369 (5)C1—H1B0.9300
O4—Cl1—O2110.33 (19)C5—N1—C1123.0 (3)
O4—Cl1—O1109.76 (17)C5—N1—H1A118.5
O2—Cl1—O1108.68 (18)C1—N1—H1A118.5
O4—Cl1—O3108.36 (15)C4—C3—C2119.0 (3)
O2—Cl1—O3109.30 (18)C4—C3—C6117.9 (3)
O1—Cl1—O3110.41 (17)C2—C3—C6123.1 (3)
C6—N2—H2A120.0C1—C2—C3118.9 (3)
C6—N2—H2B120.0C1—C2—H2C120.6
H2A—N2—H2B120.0C3—C2—H2C120.6
O5—C6—N2123.2 (3)N1—C5—C4119.3 (3)
O5—C6—C3118.9 (3)N1—C5—H5A120.3
N2—C6—C3117.8 (3)C4—C5—H5A120.3
C5—C4—C3120.0 (3)N1—C1—C2119.7 (3)
C5—C4—H4A120.0N1—C1—H1B120.1
C3—C4—H4A120.0C2—C1—H1B120.1
C5—C4—C3—C21.9 (5)C4—C3—C2—C10.6 (5)
C5—C4—C3—C6178.4 (3)C6—C3—C2—C1179.7 (3)
O5—C6—C3—C49.0 (5)C1—N1—C5—C41.0 (5)
N2—C6—C3—C4169.5 (3)C3—C4—C5—N11.2 (5)
O5—C6—C3—C2170.7 (3)C5—N1—C1—C22.4 (5)
N2—C6—C3—C210.9 (5)C3—C2—C1—N11.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.102.932 (4)162
N2—H2A···O1ii0.862.323.162 (4)168
N2—H2B···O5iii0.862.173.004 (4)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H7N2O+·ClO4
Mr222.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.935 (2), 10.082 (2), 8.2021 (16)
β (°) 99.37 (3)
V3)892.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.87, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
8863, 2033, 1421
Rint0.074
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.176, 1.04
No. of reflections2033
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.42

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.102.932 (4)161.7
N2—H2A···O1ii0.862.323.162 (4)168.1
N2—H2B···O5iii0.862.173.004 (4)164.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology, China.

References

First citationAthimoolam, S. & Natarajan, S. (2007). Acta Cryst. C63, o263–o266.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationCzupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Świergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497–8512.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGholivand, K., Zare, K., Afshar, F., Shariatinia, Z. & Khavasi, H. R. (2007). Acta Cryst. E63, o4027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatrusiak, A. & Szafrański, M. (1999). Phys. Rev. Lett. 82, 576–579.  Web of Science CrossRef CAS Google Scholar
First citationKatrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775–15785.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds