organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iodo-3-meth­­oxy-6-methyl­pyridine

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, bLife Science Department, Luoyang Normal University, Luoyang 471022, People's Republic of China, and cNorthwest Agriculture and Forest University, Yangling 712100, People's Republic of China
*Correspondence e-mail: dengdongsheng168@sina.com

(Received 15 November 2009; accepted 25 November 2009; online 28 November 2009)

The title compound, C7H8INO, which crystallizes with three independent mol­ecules in the asymmetric unit, was prepared by the reaction of 3-meth­oxy-6-methyl­pyridine with KI and I2 in tetra­hydro­furan solution. In the crystal structure, the three independent mol­ecules are arranged in a similar orientation with the three polar meth­oxy groups aligned on one side and the three non-polar methyl groups on the other side. The three mol­ecules, excluding methyl H atoms, are essentially planar, with r.m.s. deviations of 0.0141 (1), 0.0081 (1) and 0.0066 (2)Å. The three pyridine rings make dihedral angles of 58.09 (3) 66.64 (4) and 71.5 (3)°. The crystal structure features rather weak inter­molecular C—H⋯O hydrogen bonds, which link two mol­ecules into dimers, and short I⋯N contacts [4.046 (3) Å].

Related literature

For C—C bond formation reactions, see: Vlad & Horvath (2002[ Vlad, G. & Horvath, I. T. (2002). J. Org. Chem. 67, 6550-6552.]). For related structures, see: Bunker et al. (2009[ Bunker, K. D., Sach, N. W., Nukui, S., Rheingold, A. L. & Yanovsky, A. (2009). Acta Cryst. E65, o28.]); Tahir et al. (2009[ Tahir, M. N., Arshad, M. N., Khan, I. U. & Shafiq, M. (2009). Acta Cryst. E65, o535.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8INO

  • Mr = 249.04

  • Triclinic, [P \overline 1]

  • a = 7.7974 (9) Å

  • b = 10.8302 (12) Å

  • c = 16.2898 (18) Å

  • α = 106.093 (1)°

  • β = 90.633 (1)°

  • γ = 103.636 (1)°

  • V = 1280.2 (2) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 3.69 mm−1

  • T = 296 K

  • 0.20 × 0.14 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[ Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.526, Tmax = 0.646

  • 9886 measured reflections

  • 4737 independent reflections

  • 3719 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.062

  • S = 1.01

  • 4737 reflections

  • 278 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O2i 0.96 2.56 3.429 (6) 151
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[ Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[ Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[ Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[ Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As is known, the Ullmann coupling reaction is an important C—C bond formation reaction. In this reaction, the halogen derivatives of aromatic compounds have been used as its reaction substrates (Vlad & Horvath. 2002). The reaction of 3-methoxy-6-methylpyridine with KI and I2 in the presence of NaHCO3 leads to iodo-substitution at position 2 of the pyridine ring with similar structure to the previous compound (Bunker et al. 2009), as shown by the X-ray study of the title compound (Fig. 1).

The asymmetric unit consists of three neutral C7H8INO molecules, in which the bond lengths and angles are within normal ranges (Bunker et al. 2009; Tahir et al. 2009). In the crystal structure, the three molecules are arranged in the similar orientation with the three polar methoxy groups aligning on one side and the three non-polar methyl groups siding on the other side. The pyridine ring 1 (C1-C5/N1) forms dihedral angles of 58.09 (3)° and 66.64 (4)°, respectively, with the pyridine ring 2 (C8-C12/N2) and the pyridine ring 3 (C15-19/N3). Rings 2 and 3 form a dihedral angle of 71.5 (3)°. Furthermore, the organic molecules, excluding methyl H atoms, are essentially planar, with r.m.s. deviations of 0.0141 (1), 0.0081 (1) and 0.0066 (2) Å. There are no strong halogen···halogen interactions in the structure, the shortest intermolecular I—I distances are 4.266 (2)Å. However, intermolecular C—H···O hydrogen bonds link the molecules into dimers, in which C14—H14B is donor and O2 is acceptor (Table 1, Fig. 2). This weak contacts may be effective in the stabilization of the structure.

Related literature top

For C—C bond formation reactions, see: Vlad et al. (2002). For related structures, see: Bunker et al. (2009); Tahir et al. (2009).

Experimental top

To a solution of 3-methoxy-6-methylpyridine (4.00 g, 30 mmol) in THF 30 ml was added 10 ml water containing 2.69 g NaHCO3 (32 mmol). The mixture was stirred for 30 minutes. Under ice bath, the resulting solution was added dropwise a solution of I2 (8.12 g, 32 mmol) and KI (5.31 g, 32 mmol) in water (75 ml). The mixture was then stirred 72 h at room temperature, and treated with 15° solution of sodium thiosulfate, then filtered. The resulting white solid was rinsed with ice water, and dried under vacuum to afford 2-iodo-3-methoxy-6-methylpyridine, 6.48 g, 89.7° yield. The crystalline compound was obtained through the slow volatilization of ethyl acetate containing the title compound.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH), 0.96 Å (methyl CH3), and with Uĩso~(H) = 1.2Ueq(C) or 1.5Ueq(methyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) (three molecule in the asymmetric unit) with atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. View of the dimers (C—H···O hydrogen bonds are indicated as broken lines).
2-Iodo-3-methoxy-6-methylpyridine top
Crystal data top
C7H8INOZ = 6
Mr = 249.04F(000) = 708
Triclinic, P1Dx = 1.938 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7974 (9) ÅCell parameters from 3296 reflections
b = 10.8302 (12) Åθ = 2.7–23.1°
c = 16.2898 (18) ŵ = 3.69 mm1
α = 106.093 (1)°T = 296 K
β = 90.633 (1)°Block, colorless
γ = 103.636 (1)°0.20 × 0.14 × 0.13 mm
V = 1280.2 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4737 independent reflections
Radiation source: fine-focus sealed tube3719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.526, Tmax = 0.646k = 1213
9886 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0183P)2 + 0.8733P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4737 reflectionsΔρmax = 0.56 e Å3
278 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0067 (3)
Crystal data top
C7H8INOγ = 103.636 (1)°
Mr = 249.04V = 1280.2 (2) Å3
Triclinic, P1Z = 6
a = 7.7974 (9) ÅMo Kα radiation
b = 10.8302 (12) ŵ = 3.69 mm1
c = 16.2898 (18) ÅT = 296 K
α = 106.093 (1)°0.20 × 0.14 × 0.13 mm
β = 90.633 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4737 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3719 reflections with I > 2σ(I)
Tmin = 0.526, Tmax = 0.646Rint = 0.026
9886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.01Δρmax = 0.56 e Å3
4737 reflectionsΔρmin = 0.68 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2655 (6)0.5314 (4)0.5640 (3)0.0522 (10)
C20.3438 (6)0.6096 (5)0.5130 (3)0.0581 (11)
C30.3160 (7)0.5495 (6)0.4251 (3)0.0776 (15)
H30.36330.59570.38700.093*
C40.2179 (7)0.4212 (6)0.3958 (3)0.0801 (15)
H40.20100.37970.33710.096*
C50.1440 (6)0.3525 (5)0.4509 (3)0.0652 (13)
C60.0322 (8)0.2131 (5)0.4196 (3)0.0905 (17)
H6A0.08960.15500.43800.136*
H6B0.01670.18660.35810.136*
H6C0.08130.20840.44250.136*
C70.5208 (8)0.8131 (5)0.4975 (4)0.0900 (17)
H7A0.59240.76530.46000.135*
H7B0.59380.89610.53210.135*
H7C0.43110.82940.46390.135*
C80.5213 (6)0.3742 (4)0.0739 (2)0.0479 (10)
C90.6383 (6)0.4983 (4)0.0899 (3)0.0500 (10)
C100.5793 (7)0.6050 (4)0.1397 (3)0.0627 (12)
H100.65210.69060.15410.075*
C110.4127 (7)0.5816 (5)0.1669 (3)0.0671 (13)
H110.37250.65210.20040.081*
C120.3034 (6)0.4552 (5)0.1456 (3)0.0596 (11)
C130.1181 (7)0.4251 (5)0.1713 (3)0.0791 (15)
H13A0.03640.41200.12330.119*
H13B0.10290.49790.21760.119*
H13C0.09590.34600.18940.119*
C140.9152 (7)0.6345 (4)0.0738 (3)0.0765 (15)
H14A0.85910.69080.05270.115*
H14B1.02160.62760.04580.115*
H14C0.94380.67150.13450.115*
C150.1107 (5)0.9067 (4)0.2665 (2)0.0450 (9)
C160.2909 (5)0.9519 (4)0.2630 (3)0.0483 (10)
C170.3429 (6)1.0324 (4)0.2107 (3)0.0624 (12)
H170.46271.06600.20630.075*
C180.2179 (7)1.0628 (4)0.1653 (3)0.0646 (12)
H180.25281.11830.13080.077*
C190.0416 (6)1.0116 (4)0.1705 (3)0.0594 (11)
C200.1023 (7)1.0386 (6)0.1207 (4)0.0880 (17)
H20A0.18290.95610.09030.132*
H20B0.05051.08400.08070.132*
H20C0.16521.09280.15960.132*
C210.5866 (6)0.9547 (5)0.3028 (4)0.0871 (17)
H21A0.60980.92760.24360.131*
H21B0.64990.91510.33510.131*
H21C0.62481.04950.32470.131*
I10.30556 (5)0.61072 (3)0.698542 (19)0.07157 (13)
I20.60344 (4)0.20520 (3)0.00399 (2)0.06819 (12)
I30.01400 (4)0.78330 (3)0.344715 (19)0.05933 (11)
N10.1683 (5)0.4079 (4)0.5349 (2)0.0568 (9)
N20.3602 (5)0.3508 (3)0.0991 (2)0.0538 (9)
N30.0123 (4)0.9329 (3)0.2220 (2)0.0526 (9)
O10.4377 (4)0.7353 (3)0.5523 (2)0.0727 (9)
O20.7978 (4)0.5059 (3)0.05666 (19)0.0619 (8)
O30.3999 (4)0.9124 (3)0.3106 (2)0.0648 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.059 (3)0.060 (3)0.043 (2)0.024 (2)0.006 (2)0.016 (2)
C20.058 (3)0.071 (3)0.058 (3)0.027 (2)0.010 (2)0.028 (2)
C30.080 (4)0.103 (4)0.060 (3)0.028 (3)0.011 (3)0.036 (3)
C40.096 (4)0.098 (4)0.043 (3)0.029 (4)0.001 (3)0.012 (3)
C50.065 (3)0.071 (3)0.056 (3)0.024 (3)0.006 (2)0.005 (2)
C60.106 (4)0.082 (4)0.069 (3)0.022 (3)0.012 (3)0.000 (3)
C70.091 (4)0.091 (4)0.104 (4)0.014 (3)0.018 (3)0.061 (4)
C80.062 (3)0.040 (2)0.045 (2)0.017 (2)0.005 (2)0.0143 (18)
C90.061 (3)0.042 (2)0.046 (2)0.013 (2)0.008 (2)0.0104 (19)
C100.081 (3)0.043 (2)0.060 (3)0.016 (2)0.002 (3)0.008 (2)
C110.092 (4)0.058 (3)0.058 (3)0.034 (3)0.009 (3)0.014 (2)
C120.065 (3)0.069 (3)0.056 (3)0.028 (3)0.005 (2)0.026 (2)
C130.076 (4)0.100 (4)0.074 (3)0.035 (3)0.017 (3)0.035 (3)
C140.079 (4)0.053 (3)0.079 (3)0.005 (3)0.003 (3)0.008 (3)
C150.046 (2)0.035 (2)0.050 (2)0.0075 (18)0.0084 (19)0.0084 (18)
C160.045 (2)0.039 (2)0.058 (3)0.0087 (19)0.004 (2)0.0093 (19)
C170.052 (3)0.047 (3)0.083 (3)0.003 (2)0.017 (2)0.017 (2)
C180.068 (3)0.052 (3)0.077 (3)0.006 (2)0.015 (3)0.032 (2)
C190.069 (3)0.050 (3)0.058 (3)0.011 (2)0.002 (2)0.017 (2)
C200.083 (4)0.095 (4)0.098 (4)0.016 (3)0.008 (3)0.054 (3)
C210.047 (3)0.090 (4)0.128 (5)0.012 (3)0.003 (3)0.041 (4)
I10.0894 (3)0.0652 (2)0.04841 (18)0.00163 (17)0.00875 (16)0.01222 (15)
I20.0630 (2)0.03952 (17)0.0968 (3)0.01431 (14)0.00303 (17)0.01007 (16)
I30.05512 (19)0.0623 (2)0.0677 (2)0.01301 (14)0.01072 (14)0.03120 (15)
N10.064 (2)0.057 (2)0.050 (2)0.0183 (19)0.0019 (18)0.0131 (18)
N20.057 (2)0.056 (2)0.057 (2)0.0195 (18)0.0023 (18)0.0244 (18)
N30.049 (2)0.045 (2)0.061 (2)0.0090 (16)0.0021 (17)0.0147 (17)
O10.079 (2)0.066 (2)0.076 (2)0.0091 (18)0.0111 (18)0.0331 (18)
O20.0599 (19)0.0423 (16)0.0701 (19)0.0027 (14)0.0029 (16)0.0033 (14)
O30.0402 (16)0.069 (2)0.087 (2)0.0107 (15)0.0047 (15)0.0270 (17)
Geometric parameters (Å, º) top
C1—N11.323 (5)C12—N21.348 (5)
C1—C21.392 (6)C12—C131.496 (6)
C1—I12.110 (4)C13—H13A0.9600
C2—O11.355 (5)C13—H13B0.9600
C2—C31.390 (6)C13—H13C0.9600
C3—C41.366 (7)C14—O21.426 (5)
C3—H30.9300C14—H14A0.9600
C4—C51.368 (7)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—N11.324 (5)C15—N31.324 (5)
C5—C61.497 (7)C15—C161.382 (5)
C6—H6A0.9600C15—I32.114 (4)
C6—H6B0.9600C16—O31.359 (5)
C6—H6C0.9600C16—C171.380 (6)
C7—O11.449 (5)C17—C181.369 (6)
C7—H7A0.9600C17—H170.9300
C7—H7B0.9600C18—C191.369 (6)
C7—H7C0.9600C18—H180.9300
C8—N21.315 (5)C19—N31.357 (5)
C8—C91.389 (5)C19—C201.506 (6)
C8—I22.115 (4)C20—H20A0.9600
C9—O21.356 (5)C20—H20B0.9600
C9—C101.394 (6)C20—H20C0.9600
C10—C111.367 (6)C21—O31.438 (5)
C10—H100.9300C21—H21A0.9600
C11—C121.379 (6)C21—H21B0.9600
C11—H110.9300C21—H21C0.9600
N1—C1—C2125.0 (4)H13A—C13—H13B109.5
N1—C1—I1116.1 (3)C12—C13—H13C109.5
C2—C1—I1118.9 (3)H13A—C13—H13C109.5
O1—C2—C3126.1 (4)H13B—C13—H13C109.5
O1—C2—C1118.2 (4)O2—C14—H14A109.5
C3—C2—C1115.6 (5)O2—C14—H14B109.5
C4—C3—C2118.8 (5)H14A—C14—H14B109.5
C4—C3—H3120.6O2—C14—H14C109.5
C2—C3—H3120.6H14A—C14—H14C109.5
C3—C4—C5121.4 (5)H14B—C14—H14C109.5
C3—C4—H4119.3N3—C15—C16124.5 (4)
C5—C4—H4119.3N3—C15—I3115.2 (3)
N1—C5—C4120.8 (5)C16—C15—I3120.3 (3)
N1—C5—C6117.3 (5)O3—C16—C17126.2 (4)
C4—C5—C6122.0 (5)O3—C16—C15117.2 (4)
C5—C6—H6A109.5C17—C16—C15116.6 (4)
C5—C6—H6B109.5C18—C17—C16119.8 (4)
H6A—C6—H6B109.5C18—C17—H17120.1
C5—C6—H6C109.5C16—C17—H17120.1
H6A—C6—H6C109.5C19—C18—C17120.2 (4)
H6B—C6—H6C109.5C19—C18—H18119.9
O1—C7—H7A109.5C17—C18—H18119.9
O1—C7—H7B109.5N3—C19—C18120.8 (4)
H7A—C7—H7B109.5N3—C19—C20116.4 (4)
O1—C7—H7C109.5C18—C19—C20122.8 (4)
H7A—C7—H7C109.5C19—C20—H20A109.5
H7B—C7—H7C109.5C19—C20—H20B109.5
N2—C8—C9125.6 (4)H20A—C20—H20B109.5
N2—C8—I2115.6 (3)C19—C20—H20C109.5
C9—C8—I2118.8 (3)H20A—C20—H20C109.5
O2—C9—C8118.2 (4)H20B—C20—H20C109.5
O2—C9—C10125.8 (4)O3—C21—H21A109.5
C8—C9—C10116.0 (4)O3—C21—H21B109.5
C11—C10—C9118.9 (4)H21A—C21—H21B109.5
C11—C10—H10120.6O3—C21—H21C109.5
C9—C10—H10120.6H21A—C21—H21C109.5
C10—C11—C12121.0 (4)H21B—C21—H21C109.5
C10—C11—H11119.5C1—N1—C5118.3 (4)
C12—C11—H11119.5C8—N2—C12117.8 (4)
N2—C12—C11120.6 (4)C15—N3—C19118.0 (4)
N2—C12—C13116.3 (4)C2—O1—C7116.9 (4)
C11—C12—C13123.1 (4)C9—O2—C14117.1 (3)
C12—C13—H13A109.5C16—O3—C21116.5 (4)
C12—C13—H13B109.5
N1—C1—C2—O1179.0 (4)C15—C16—C17—C180.4 (6)
I1—C1—C2—O12.2 (5)C16—C17—C18—C191.1 (7)
N1—C1—C2—C30.6 (7)C17—C18—C19—N31.5 (7)
I1—C1—C2—C3178.2 (3)C17—C18—C19—C20178.5 (5)
O1—C2—C3—C4179.9 (5)C2—C1—N1—C50.8 (6)
C1—C2—C3—C40.5 (7)I1—C1—N1—C5178.0 (3)
C2—C3—C4—C51.5 (8)C4—C5—N1—C10.1 (7)
C3—C4—C5—N11.3 (8)C6—C5—N1—C1179.5 (4)
C3—C4—C5—C6178.4 (5)C9—C8—N2—C121.1 (6)
N2—C8—C9—O2177.6 (4)I2—C8—N2—C12178.5 (3)
I2—C8—C9—O22.8 (5)C11—C12—N2—C81.1 (6)
N2—C8—C9—C102.5 (6)C13—C12—N2—C8178.6 (4)
I2—C8—C9—C10177.2 (3)C16—C15—N3—C191.5 (6)
O2—C9—C10—C11178.5 (4)I3—C15—N3—C19180.0 (3)
C8—C9—C10—C111.6 (6)C18—C19—N3—C150.3 (6)
C9—C10—C11—C120.4 (7)C20—C19—N3—C15179.8 (4)
C10—C11—C12—N21.8 (7)C3—C2—O1—C71.8 (7)
C10—C11—C12—C13177.9 (4)C1—C2—O1—C7178.7 (4)
N3—C15—C16—O3177.8 (3)C8—C9—O2—C14179.8 (4)
I3—C15—C16—O30.7 (5)C10—C9—O2—C140.3 (6)
N3—C15—C16—C171.8 (6)C17—C16—O3—C212.6 (6)
I3—C15—C16—C17179.7 (3)C15—C16—O3—C21177.0 (4)
O3—C16—C17—C18179.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.962.563.429 (6)151
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H8INO
Mr249.04
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7974 (9), 10.8302 (12), 16.2898 (18)
α, β, γ (°)106.093 (1), 90.633 (1), 103.636 (1)
V3)1280.2 (2)
Z6
Radiation typeMo Kα
µ (mm1)3.69
Crystal size (mm)0.20 × 0.14 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.526, 0.646
No. of measured, independent and
observed [I > 2σ(I)] reflections
9886, 4737, 3719
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.062, 1.01
No. of reflections4737
No. of parameters278
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.68

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.962.563.429 (6)151
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

This work was supported by the Doctoral Foundation and Cultivatable Foundation (2008-PYJJ-011) of Luoyang Normal University.

References

First citation Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citation Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Bunker, K. D., Sach, N. W., Nukui, S., Rheingold, A. L. & Yanovsky, A. (2009). Acta Cryst. E65, o28.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Spek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Tahir, M. N., Arshad, M. N., Khan, I. U. & Shafiq, M. (2009). Acta Cryst. E65, o535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Vlad, G. & Horvath, I. T. (2002). J. Org. Chem. 67, 6550–6552.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds