organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

o-Phenyl­enedi­ammonium bis­­(3-carb­­oxy-4-hy­droxy­benzene­sulfonate)

aDepartment of Chemistry & Materials Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, 215500 Jiangsu, People's Republic of China
*Correspondence e-mail: myschem@hotmail.com

(Received 4 October 2009; accepted 18 November 2009; online 21 November 2009)

In the title salt, C6H10N22+·2C7H5O6S, the negative charge of the anion resides on the sulfonate group. In the crystal, the cations and anions are ­linked by N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network. The complete dication is generated by crystallographic twofold symmetry.

Related literature

For related structures, see: Bakasova et al. (1991[Bakasova, Z. B., Abdybaliev, D. A., Sharipov, Kh. T., Akbaev, A. A., Ibragimov, B. T., Talipov, S. A. & Ismankulov, A. I. (1991). Uzb. Khim. Zh. pp. 22-25.]); Du et al. (2008[Du, G., Liu, Z., Chu, Q., Li, Z. & Zhang, S. (2008). Acta Cryst. E64, o1947-o1948.]); Meng et al. (2008[Meng, X.-G., Xiao, Y.-L., Wang, Z.-L. & Liu, C.-L. (2008). Acta Cryst. C64, o53-o57.]); Raj et al. (2003[Raj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70-76.]); Smith (2005[Smith, G. (2005). Acta Cryst. E61, o3398-o3400.]); Smith et al. (2004[Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575-o581.], 2005a[Smith, G., Wermuth, U. D. & Healy, P. C. (2005a). Acta Cryst. C61, o555-o558.],b[Smith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. C61, o105-o109.],c[Smith, G., Wermuth, U. D. & White, J. M. (2005c). Acta Cryst. E61, o313-o316.], 2006[Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o1863-o1865.]); Wang & Wei (2007[Wang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, o1448-o1449.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N22+·2C7H5O6S

  • Mr = 544.50

  • Monoclinic, C 2/c

  • a = 11.667 (2) Å

  • b = 16.081 (3) Å

  • c = 12.356 (3) Å

  • β = 105.90 (3)°

  • V = 2229.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 566 K

  • 0.30 × 0.28 × 0.24 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.902, Tmax = 0.923

  • 11440 measured reflections

  • 2543 independent reflections

  • 2019 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.108

  • S = 1.00

  • 2543 reflections

  • 178 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.856 (10) 2.46 (2) 3.157 (3) 139 (2)
N1—H1B⋯O4i 0.856 (10) 2.424 (18) 3.176 (3) 147 (2)
N1—H1A⋯O2ii 0.860 (10) 1.939 (11) 2.795 (3) 174 (3)
N1—H1B⋯O6iii 0.856 (10) 2.46 (3) 2.836 (3) 107 (2)
N1—H1C⋯O1 0.857 (10) 1.979 (17) 2.755 (3) 150 (3)
O3—H3A⋯O6 0.86 (3) 1.82 (2) 2.600 (3) 151 (3)
O5—H5A⋯O4iv 0.849 (10) 1.819 (10) 2.668 (2) 178 (3)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A number of proton-transfer compounds of 3-carboxy-4-hydroxybenzenesulfonic acid with Lewis bases have been widely studied because of the good crystallinity of many of the compounds (Smith et al., 2004; Wang & Wei, 2007; Meng et al., 2008; Du et al., 2008). The feature is the presence of hydrogen-bonding interactions, resulted from the aminium donor group and the sulfonate and carboxyl O-atom acceptors. There are some aniline-type proton-transfer compounds reported during the past several years. These include compounds with aniline (Bakasova et al., 1991), the 4-X-substituted anilines (X = F, Cl, Br) (Smith et al., 2005b), 3-aminobenzoic acid (Smith 2005), 4-aminobenzoic acid (Smith et al., 2005c), benzylamine (Smith et al., 2006), 1,4-phenylenediamine (Smith et al., 2005a). The present paper is concerned with the crystal structure of a new proton-transfer compound of 3-carboxy-4-hydroxybenzenesulfonic acid with 1,2-phenylenediamine as Lewis base.

In the compound, the asymmetric unit consists of one half 1,2-phenylenediaminium dication and one 3-carboxy-4-hydroxy-benzenesulfonate anion. The hydrogen atom was transferred from the sulfonic group to the amino nitrogen atom, forming an 1:2 organic salt. In the anion (Fig. 1 and Table 1), the carboxyl group is nearly coplanar with the benzene ring [the dihedral angle is 3.9 o] and there is an intramolecular hydrogen bond O3—H···O6 2.600 (3) Å involving the hydroxy group and carboxyl atom. In addition, intermolecular hydrogen bonds between a sulfonate O atom and a carboxylate O atom [O5···O4 = 2.668 (2) Å; symmetry code: 1/2-x,1/2+y,1/2-z] connect the anions through head-to-tail into a one-dmensional chain (Fig. 2 and Table 2). The protonated N atoms form hydrogen bonds with three sulfonate O atoms and one carboxyl O atom [range 2.755 (3)—3.176 (3) Å) (Fig. 3 and Table 2), forming a three-dimensional network. The network are further consolidated by ππ stacking effects between the benzene rings of anions [the inter-ring centroid distance is 3.564 (1) Å].

Related literature top

For related structures, see: Bakasova et al. (1991); Du et al. (2008); Meng et al. (2008); Raj et al. (2003); Smith (2005); Smith et al. (2004, 2005a,b,c, 2006); Wang & Wei (2007).

Experimental top

The title compound was synthesized by heating 3-carboxy-4-hydroxybenzenesulfonic acid (0.218 g, 1 mmol) and 1,2-phenylenediamine (0.108 g, 1 mmol) in water (20 mL) for 2 hours. After evaporation the solution, dark-blue block crystals formed in high yield.

Refinement top

Carbon-bound H atoms were positioned geometrically (C—H = 0.93 Å), and were included in the refinement in the riding mode approximation, with Uiso(H) = 1.2Ueq(C). H atoms bound to O and N atoms were located in a difference Fourier map and refined with restraints [N—H and O—H = 0.85 (1) Å, with Uiso(H) values fixed at 1.5Ueq(N) and 1.5Ueq(O)].

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. [Symmetry code A = 1-x, y, 1/2-z]. The H-bonds are shown as dashed lines.
[Figure 2] Fig. 2. Viw of the one-dimensional hydrogen bonded chain of 3-carboxylato-4-hydroxybenzenesulfonate shown with dashed lines, running along the b axis.
[Figure 3] Fig. 3. The cell packing diagram indicating hydrogen bonds links with dashed lines, viewed down the a axis.
o-Phenylenediammonium bis(3-carboxy-4-hydroxybenzenesulfonate) top
Crystal data top
C6H10N22+·2C7H5O6SF(000) = 1128
Mr = 544.50Dx = 1.622 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6744 reflections
a = 11.667 (2) Åθ = 3.3–27.6°
b = 16.081 (3) ŵ = 0.31 mm1
c = 12.356 (3) ÅT = 566 K
β = 105.90 (3)°Block, dark-blue
V = 2229.5 (9) Å30.30 × 0.28 × 0.24 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2543 independent reflections
Radiation source: fine-focus sealed tube2019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
dtfind.ref scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2020
Tmin = 0.902, Tmax = 0.923l = 1515
11440 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0426P)2 + 3.7751P]
where P = (Fo2 + 2Fc2)/3
2543 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.34 e Å3
5 restraintsΔρmin = 0.38 e Å3
Crystal data top
C6H10N22+·2C7H5O6SV = 2229.5 (9) Å3
Mr = 544.50Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.667 (2) ŵ = 0.31 mm1
b = 16.081 (3) ÅT = 566 K
c = 12.356 (3) Å0.30 × 0.28 × 0.24 mm
β = 105.90 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2543 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2019 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.923Rint = 0.042
11440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0485 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.34 e Å3
2543 reflectionsΔρmin = 0.38 e Å3
178 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1315 (2)0.73023 (13)0.37688 (17)0.0286 (5)
C20.0224 (2)0.71605 (15)0.40005 (19)0.0334 (5)
C30.0144 (2)0.63524 (16)0.4130 (2)0.0400 (6)
H30.08700.62590.42850.048*
C40.0566 (2)0.56927 (14)0.40305 (19)0.0338 (5)
H40.03140.51530.41080.041*
C50.16661 (19)0.58267 (13)0.38137 (17)0.0255 (4)
C60.20342 (19)0.66230 (13)0.36823 (17)0.0265 (4)
H60.27650.67110.35350.032*
C70.1671 (2)0.81562 (14)0.35783 (19)0.0340 (5)
C80.5460 (2)0.77864 (15)0.2988 (2)0.0463 (7)
H80.57700.82880.33150.056*
C90.5925 (2)0.70459 (15)0.3483 (2)0.0379 (6)
H90.65450.70470.41420.046*
C100.54644 (18)0.63079 (13)0.29932 (17)0.0258 (4)
S10.25193 (5)0.49616 (3)0.36307 (5)0.03052 (16)
O10.37475 (17)0.52318 (12)0.3896 (2)0.0617 (6)
O20.23442 (14)0.43243 (10)0.43955 (14)0.0367 (4)
O30.05305 (18)0.77829 (12)0.40738 (17)0.0513 (5)
H3A0.014 (3)0.8226 (13)0.403 (3)0.077*
O40.2075 (2)0.47241 (12)0.24585 (15)0.0656 (7)
O50.27040 (17)0.82146 (10)0.33577 (16)0.0444 (5)
H5A0.276 (3)0.8699 (10)0.310 (2)0.067*
O60.10406 (17)0.87634 (10)0.36053 (16)0.0498 (5)
N10.59386 (18)0.55255 (12)0.35330 (17)0.0326 (4)
H1A0.6474 (19)0.5606 (17)0.4158 (14)0.049*
H1B0.620 (2)0.5226 (15)0.3080 (19)0.049*
H1C0.5367 (18)0.5255 (15)0.368 (2)0.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0364 (12)0.0250 (11)0.0238 (10)0.0015 (9)0.0075 (9)0.0000 (8)
C20.0353 (12)0.0369 (13)0.0288 (11)0.0079 (10)0.0101 (10)0.0001 (10)
C30.0319 (13)0.0456 (15)0.0469 (14)0.0002 (11)0.0184 (11)0.0031 (12)
C40.0349 (12)0.0316 (12)0.0364 (13)0.0060 (10)0.0121 (10)0.0003 (10)
C50.0297 (11)0.0241 (10)0.0233 (10)0.0008 (8)0.0080 (9)0.0009 (8)
C60.0278 (11)0.0261 (11)0.0258 (11)0.0005 (9)0.0079 (9)0.0008 (8)
C70.0448 (14)0.0277 (12)0.0280 (12)0.0027 (10)0.0073 (10)0.0003 (9)
C80.0600 (18)0.0249 (12)0.0618 (17)0.0104 (11)0.0298 (13)0.0116 (11)
C90.0422 (14)0.0343 (13)0.0382 (13)0.0092 (11)0.0126 (11)0.0088 (10)
C100.0263 (11)0.0235 (10)0.0288 (11)0.0002 (8)0.0094 (9)0.0011 (8)
S10.0387 (3)0.0218 (3)0.0332 (3)0.0037 (2)0.0134 (2)0.0026 (2)
O10.0403 (11)0.0380 (11)0.1180 (19)0.0047 (8)0.0410 (12)0.0108 (11)
O20.0404 (9)0.0279 (8)0.0394 (9)0.0004 (7)0.0070 (7)0.0091 (7)
O30.0508 (12)0.0455 (11)0.0653 (12)0.0171 (9)0.0291 (10)0.0021 (10)
O40.1183 (19)0.0432 (11)0.0312 (10)0.0353 (12)0.0134 (11)0.0044 (8)
O50.0530 (11)0.0263 (9)0.0593 (12)0.0020 (8)0.0246 (9)0.0068 (8)
O60.0623 (12)0.0272 (9)0.0616 (12)0.0110 (8)0.0200 (10)0.0001 (8)
N10.0339 (11)0.0304 (11)0.0322 (11)0.0019 (9)0.0070 (8)0.0050 (9)
Geometric parameters (Å, º) top
C1—C21.398 (3)C8—C91.380 (4)
C1—C61.399 (3)C8—H80.9300
C1—C71.472 (3)C9—C101.373 (3)
C2—O31.352 (3)C9—H90.9300
C2—C31.391 (3)C10—C10i1.391 (4)
C3—C41.372 (3)C10—N11.460 (3)
C3—H30.9300S1—O21.4459 (16)
C4—C51.398 (3)S1—O11.447 (2)
C4—H40.9300S1—O41.4495 (19)
C5—C61.374 (3)O3—H3A0.86 (3)
C5—S11.761 (2)O5—H5A0.849 (10)
C6—H60.9300N1—H1A0.860 (10)
C7—O61.228 (3)N1—H1B0.856 (10)
C7—O51.310 (3)N1—H1C0.857 (10)
C8—C8i1.378 (6)
C2—C1—C6119.2 (2)C8i—C8—H8119.8
C2—C1—C7119.8 (2)C9—C8—H8119.8
C6—C1—C7121.0 (2)C10—C9—C8119.5 (2)
O3—C2—C3117.2 (2)C10—C9—H9120.3
O3—C2—C1122.6 (2)C8—C9—H9120.3
C3—C2—C1120.2 (2)C9—C10—C10i120.17 (14)
C4—C3—C2119.9 (2)C9—C10—N1119.4 (2)
C4—C3—H3120.0C10i—C10—N1120.45 (11)
C2—C3—H3120.0O2—S1—O1111.92 (12)
C3—C4—C5120.4 (2)O2—S1—O4112.98 (12)
C3—C4—H4119.8O1—S1—O4111.50 (15)
C5—C4—H4119.8O2—S1—C5106.86 (10)
C6—C5—C4120.0 (2)O1—S1—C5107.06 (11)
C6—C5—S1121.00 (17)O4—S1—C5106.05 (11)
C4—C5—S1118.93 (16)C2—O3—H3A104 (2)
C5—C6—C1120.3 (2)C7—O5—H5A108 (2)
C5—C6—H6119.8C10—N1—H1A111.8 (19)
C1—C6—H6119.8C10—N1—H1B110.2 (19)
O6—C7—O5122.7 (2)H1A—N1—H1B112 (3)
O6—C7—C1122.7 (2)C10—N1—H1C108.4 (19)
O5—C7—C1114.6 (2)H1A—N1—H1C107 (3)
C8i—C8—C9120.33 (15)H1B—N1—H1C107 (3)
C6—C1—C2—O3178.6 (2)C2—C1—C7—O60.5 (3)
C7—C1—C2—O30.9 (3)C6—C1—C7—O6177.2 (2)
C6—C1—C2—C30.7 (3)C2—C1—C7—O5179.4 (2)
C7—C1—C2—C3177.0 (2)C6—C1—C7—O51.7 (3)
O3—C2—C3—C4178.0 (2)C8i—C8—C9—C100.1 (5)
C1—C2—C3—C40.0 (4)C8—C9—C10—C10i0.1 (4)
C2—C3—C4—C50.9 (4)C8—C9—C10—N1178.5 (2)
C3—C4—C5—C61.0 (3)C6—C5—S1—O2147.63 (18)
C3—C4—C5—S1177.25 (19)C4—C5—S1—O236.1 (2)
C4—C5—C6—C10.2 (3)C6—C5—S1—O127.6 (2)
S1—C5—C6—C1176.44 (16)C4—C5—S1—O1156.21 (19)
C2—C1—C6—C50.6 (3)C6—C5—S1—O491.6 (2)
C7—C1—C6—C5177.1 (2)C4—C5—S1—O484.6 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.86 (1)2.46 (2)3.157 (3)139 (2)
N1—H1B···O4i0.86 (1)2.42 (2)3.176 (3)147 (2)
N1—H1A···O2ii0.86 (1)1.94 (1)2.795 (3)174 (3)
N1—H1B···O6iii0.86 (1)2.46 (3)2.836 (3)107 (2)
N1—H1C···O10.86 (1)1.98 (2)2.755 (3)150 (3)
O3—H3A···O60.86 (3)1.82 (2)2.600 (3)151 (3)
O5—H5A···O4iv0.85 (1)1.82 (1)2.668 (2)178 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H10N22+·2C7H5O6S
Mr544.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)566
a, b, c (Å)11.667 (2), 16.081 (3), 12.356 (3)
β (°) 105.90 (3)
V3)2229.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.30 × 0.28 × 0.24
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.902, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
11440, 2543, 2019
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.108, 1.00
No. of reflections2543
No. of parameters178
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.38

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
C2—O31.352 (3)S1—O21.4459 (16)
C7—O61.228 (3)S1—O11.447 (2)
C7—O51.310 (3)S1—O41.4495 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.856 (10)2.46 (2)3.157 (3)139 (2)
N1—H1B···O4i0.856 (10)2.424 (18)3.176 (3)147 (2)
N1—H1A···O2ii0.860 (10)1.939 (11)2.795 (3)174 (3)
N1—H1B···O6iii0.856 (10)2.46 (3)2.836 (3)107 (2)
N1—H1C···O10.857 (10)1.979 (17)2.755 (3)150 (3)
O3—H3A···O60.86 (3)1.82 (2)2.600 (3)151 (3)
O5—H5A···O4iv0.849 (10)1.819 (10)2.668 (2)178 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from CSLG (No. KY10657) and by the Natural Science Fund of Jiangsu Province (No. 08KJB150001).

References

First citationBakasova, Z. B., Abdybaliev, D. A., Sharipov, Kh. T., Akbaev, A. A., Ibragimov, B. T., Talipov, S. A. & Ismankulov, A. I. (1991). Uzb. Khim. Zh. pp. 22–25.  Google Scholar
First citationDu, G., Liu, Z., Chu, Q., Li, Z. & Zhang, S. (2008). Acta Cryst. E64, o1947–o1948.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMeng, X.-G., Xiao, Y.-L., Wang, Z.-L. & Liu, C.-L. (2008). Acta Cryst. C64, o53–o57.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. (2005). Acta Cryst. E61, o3398–o3400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2005a). Acta Cryst. C61, o555–o558.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o1863–o1865.  CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. C61, o105–o109.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2005c). Acta Cryst. E61, o313–o316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, o1448–o1449.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds