organic compounds
3-Hydroxypyridinium hydrogen chloranilate monohydrate
aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp
In the title salt hydrate, C5H6NO+·C6HCl2O4−·H2O, the three components are held together by O—H⋯O and N—H⋯O hydrogen bonds, as well as by C—H⋯O contacts, forming a double-tape structure along the c axis. Within each tape, the pyridinium ring and the chloranilate ring are almost coplanar, forming a dihedral angle of 2.35 (7)°.
Related literature
For related structures, see, for example: Gotoh et al. (2009a,b); Gotoh & Ishida (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809046844/tk2567sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809046844/tk2567Isup2.hkl
Single crystals were obtained by slow evaporation from a methanol solution (150 ml) of chloranilic acid (350 mg) and 3-hydroxypyridine (160 mg) at room temperature.
All H atoms were found in a difference Fourier map and O- and N-bound H atoms were refined isotropically. The refined O—H and N—H bond lengths are given in Table 1. C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell
PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).Fig. 1. The molecular structures of the constituents in (I), with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. The dashed lines indicate O—H···O hydrogen bonds and C—H···O contacts. | |
Fig. 2. A partial packing diagram for (I), showing a molecular tape running along the c axis. The dashed lines indicate O—H···O and N—H···O hydrogen bonds, and C—H···O contacts. | |
Fig. 3. A partial packing diagram for (I), showing a double-tape structure running along the c axis. The dashed lines indicate O—H···O and N—H···O hydrogen bonds, and C—H···O contacts. H atoms not involved in the hydrogen bonds have been omitted. |
C5H6NO+·C6HCl2O4−·H2O | Z = 2 |
Mr = 322.10 | F(000) = 328.00 |
Triclinic, P1 | Dx = 1.739 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 7.4893 (13) Å | Cell parameters from 10001 reflections |
b = 9.6650 (17) Å | θ = 3.0–30.1° |
c = 9.9305 (17) Å | µ = 0.55 mm−1 |
α = 88.129 (5)° | T = 180 K |
β = 68.404 (6)° | Block, brown |
γ = 67.980 (4)° | 0.20 × 0.15 × 0.05 mm |
V = 614.95 (18) Å3 |
Rigaku R-AXIS RAPID-II diffractometer | 2952 reflections with I > 2σ(I) |
Detector resolution: 10.00 pixels mm-1 | Rint = 0.025 |
ω scans | θmax = 30.0° |
Absorption correction: numerical (ABSCOR; Higashi, 1999) | h = −10→10 |
Tmin = 0.907, Tmax = 0.973 | k = −13→13 |
12237 measured reflections | l = −13→13 |
3572 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0481P)2 + 0.2238P] where P = (Fo2 + 2Fc2)/3 |
3572 reflections | (Δ/σ)max < 0.001 |
201 parameters | Δρmax = 0.60 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C5H6NO+·C6HCl2O4−·H2O | γ = 67.980 (4)° |
Mr = 322.10 | V = 614.95 (18) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.4893 (13) Å | Mo Kα radiation |
b = 9.6650 (17) Å | µ = 0.55 mm−1 |
c = 9.9305 (17) Å | T = 180 K |
α = 88.129 (5)° | 0.20 × 0.15 × 0.05 mm |
β = 68.404 (6)° |
Rigaku R-AXIS RAPID-II diffractometer | 3572 independent reflections |
Absorption correction: numerical (ABSCOR; Higashi, 1999) | 2952 reflections with I > 2σ(I) |
Tmin = 0.907, Tmax = 0.973 | Rint = 0.025 |
12237 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.60 e Å−3 |
3572 reflections | Δρmin = −0.29 e Å−3 |
201 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.74975 (5) | 0.30013 (3) | 0.52240 (3) | 0.01897 (9) | |
Cl2 | 0.76493 (5) | 0.94942 (3) | 0.44706 (4) | 0.02295 (10) | |
O1 | 0.77201 (16) | 0.47186 (11) | 0.26178 (10) | 0.0198 (2) | |
O2 | 0.72724 (17) | 0.51208 (11) | 0.74674 (10) | 0.0226 (2) | |
O3 | 0.73261 (17) | 0.78687 (12) | 0.71214 (11) | 0.0244 (2) | |
O4 | 0.76878 (18) | 0.74463 (12) | 0.23264 (11) | 0.0238 (2) | |
O5 | 0.7211 (2) | 0.21895 (12) | 0.23481 (11) | 0.0277 (2) | |
O6 | 0.8140 (2) | 0.62351 (14) | −0.02703 (12) | 0.0284 (2) | |
N1 | 0.7338 (2) | 0.25226 (14) | −0.13073 (13) | 0.0229 (2) | |
C1 | 0.76153 (19) | 0.53710 (14) | 0.37347 (13) | 0.0153 (2) | |
C2 | 0.7509 (2) | 0.47845 (13) | 0.50577 (13) | 0.0152 (2) | |
C3 | 0.7388 (2) | 0.55870 (14) | 0.62593 (13) | 0.0162 (2) | |
C4 | 0.7419 (2) | 0.71690 (14) | 0.60863 (14) | 0.0173 (2) | |
C5 | 0.7570 (2) | 0.77458 (14) | 0.46900 (14) | 0.0168 (2) | |
C6 | 0.7618 (2) | 0.69224 (14) | 0.35935 (14) | 0.0165 (2) | |
C7 | 0.7293 (2) | 0.29123 (15) | −0.00035 (15) | 0.0199 (3) | |
H7 | 0.7272 | 0.3870 | 0.0215 | 0.024* | |
C8 | 0.7279 (2) | 0.18979 (15) | 0.10182 (14) | 0.0190 (3) | |
C9 | 0.7317 (2) | 0.05028 (15) | 0.06603 (15) | 0.0222 (3) | |
H9 | 0.7297 | −0.0203 | 0.1348 | 0.027* | |
C10 | 0.7383 (2) | 0.01496 (16) | −0.06979 (16) | 0.0239 (3) | |
H10 | 0.7428 | −0.0805 | −0.0954 | 0.029* | |
C11 | 0.7382 (2) | 0.11952 (17) | −0.16830 (15) | 0.0252 (3) | |
H11 | 0.7413 | 0.0970 | −0.2617 | 0.030* | |
H1 | 0.731 (3) | 0.328 (2) | −0.188 (2) | 0.041 (6)* | |
H6A | 0.759 (4) | 0.633 (3) | −0.084 (3) | 0.067 (8)* | |
H6B | 0.941 (5) | 0.594 (3) | −0.081 (3) | 0.061 (8)* | |
H4 | 0.762 (4) | 0.690 (3) | 0.182 (3) | 0.063 (8)* | |
H5 | 0.739 (4) | 0.301 (3) | 0.235 (3) | 0.060 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.02939 (17) | 0.01539 (14) | 0.01838 (15) | −0.01195 (12) | −0.01284 (12) | 0.00521 (11) |
Cl2 | 0.03172 (18) | 0.01444 (15) | 0.02679 (18) | −0.01173 (13) | −0.01295 (14) | 0.00362 (11) |
O1 | 0.0324 (5) | 0.0193 (4) | 0.0138 (4) | −0.0142 (4) | −0.0113 (4) | 0.0028 (3) |
O2 | 0.0366 (6) | 0.0214 (5) | 0.0159 (4) | −0.0141 (4) | −0.0140 (4) | 0.0051 (4) |
O3 | 0.0360 (6) | 0.0239 (5) | 0.0181 (5) | −0.0149 (4) | −0.0120 (4) | −0.0016 (4) |
O4 | 0.0443 (6) | 0.0186 (5) | 0.0171 (5) | −0.0168 (4) | −0.0166 (4) | 0.0069 (4) |
O5 | 0.0531 (7) | 0.0237 (5) | 0.0208 (5) | −0.0232 (5) | −0.0218 (5) | 0.0071 (4) |
O6 | 0.0357 (6) | 0.0369 (6) | 0.0159 (5) | −0.0149 (5) | −0.0124 (5) | 0.0023 (4) |
N1 | 0.0314 (6) | 0.0236 (6) | 0.0174 (5) | −0.0136 (5) | −0.0106 (5) | 0.0073 (4) |
C1 | 0.0189 (6) | 0.0146 (5) | 0.0145 (5) | −0.0077 (4) | −0.0076 (4) | 0.0027 (4) |
C2 | 0.0212 (6) | 0.0130 (5) | 0.0145 (6) | −0.0081 (4) | −0.0088 (5) | 0.0029 (4) |
C3 | 0.0192 (6) | 0.0162 (5) | 0.0152 (6) | −0.0077 (5) | −0.0079 (5) | 0.0023 (4) |
C4 | 0.0204 (6) | 0.0180 (6) | 0.0157 (6) | −0.0086 (5) | −0.0080 (5) | 0.0011 (4) |
C5 | 0.0218 (6) | 0.0128 (5) | 0.0185 (6) | −0.0086 (5) | −0.0088 (5) | 0.0030 (4) |
C6 | 0.0221 (6) | 0.0152 (5) | 0.0150 (6) | −0.0091 (5) | −0.0086 (5) | 0.0043 (4) |
C7 | 0.0272 (7) | 0.0171 (6) | 0.0191 (6) | −0.0114 (5) | −0.0101 (5) | 0.0034 (5) |
C8 | 0.0261 (7) | 0.0181 (6) | 0.0170 (6) | −0.0111 (5) | −0.0103 (5) | 0.0026 (5) |
C9 | 0.0340 (7) | 0.0181 (6) | 0.0202 (6) | −0.0134 (5) | −0.0134 (6) | 0.0049 (5) |
C10 | 0.0335 (7) | 0.0206 (6) | 0.0219 (7) | −0.0137 (6) | −0.0118 (6) | 0.0002 (5) |
C11 | 0.0344 (8) | 0.0295 (7) | 0.0162 (6) | −0.0157 (6) | −0.0113 (5) | 0.0023 (5) |
Cl1—C2 | 1.7289 (13) | C1—C2 | 1.4007 (17) |
Cl2—C5 | 1.7172 (13) | C1—C6 | 1.5020 (17) |
O1—C1 | 1.2564 (15) | C2—C3 | 1.4006 (17) |
O2—C3 | 1.2519 (15) | C3—C4 | 1.5412 (18) |
O3—C4 | 1.2149 (16) | C4—C5 | 1.4587 (18) |
O4—C6 | 1.3313 (15) | C5—C6 | 1.3514 (18) |
O4—H4 | 0.76 (3) | C7—C8 | 1.3877 (18) |
O5—C8 | 1.3381 (16) | C7—H7 | 0.9500 |
O5—H5 | 0.85 (3) | C8—C9 | 1.3930 (18) |
O6—H6A | 0.80 (3) | C9—C10 | 1.3808 (19) |
O6—H6B | 0.84 (3) | C9—H9 | 0.9500 |
N1—C11 | 1.3330 (19) | C10—C11 | 1.383 (2) |
N1—C7 | 1.3452 (18) | C10—H10 | 0.9500 |
N1—H1 | 0.91 (2) | C11—H11 | 0.9500 |
C6—O4—H4 | 111 (2) | C4—C5—Cl2 | 119.01 (9) |
C8—O5—H5 | 106.0 (18) | O4—C6—C5 | 121.39 (11) |
H6A—O6—H6B | 103 (3) | O4—C6—C1 | 116.69 (11) |
C11—N1—C7 | 123.32 (12) | C5—C6—C1 | 121.91 (11) |
C11—N1—H1 | 125.1 (14) | N1—C7—C8 | 119.14 (12) |
C7—N1—H1 | 111.6 (14) | N1—C7—H7 | 120.4 |
O1—C1—C2 | 126.22 (11) | C8—C7—H7 | 120.4 |
O1—C1—C6 | 115.16 (11) | O5—C8—C7 | 123.49 (12) |
C2—C1—C6 | 118.62 (11) | O5—C8—C9 | 117.59 (12) |
C3—C2—C1 | 122.83 (11) | C7—C8—C9 | 118.92 (12) |
C3—C2—Cl1 | 118.48 (9) | C10—C9—C8 | 119.78 (13) |
C1—C2—Cl1 | 118.68 (9) | C10—C9—H9 | 120.1 |
O2—C3—C2 | 125.37 (12) | C8—C9—H9 | 120.1 |
O2—C3—C4 | 116.88 (11) | C9—C10—C11 | 119.55 (13) |
C2—C3—C4 | 117.75 (11) | C9—C10—H10 | 120.2 |
O3—C4—C5 | 123.42 (12) | C11—C10—H10 | 120.2 |
O3—C4—C3 | 118.12 (11) | N1—C11—C10 | 119.29 (13) |
C5—C4—C3 | 118.46 (10) | N1—C11—H11 | 120.4 |
C6—C5—C4 | 120.38 (11) | C10—C11—H11 | 120.4 |
C6—C5—Cl2 | 120.61 (10) | ||
O1—C1—C2—C3 | −179.78 (13) | C4—C5—C6—O4 | 177.85 (12) |
C6—C1—C2—C3 | 0.53 (19) | Cl2—C5—C6—O4 | −1.29 (19) |
O1—C1—C2—Cl1 | −0.50 (19) | C4—C5—C6—C1 | −2.7 (2) |
C6—C1—C2—Cl1 | 179.80 (9) | Cl2—C5—C6—C1 | 178.13 (10) |
C1—C2—C3—O2 | 179.38 (13) | O1—C1—C6—O4 | 1.29 (17) |
Cl1—C2—C3—O2 | 0.10 (19) | C2—C1—C6—O4 | −178.98 (12) |
C1—C2—C3—C4 | −1.25 (19) | O1—C1—C6—C5 | −178.16 (12) |
Cl1—C2—C3—C4 | 179.47 (9) | C2—C1—C6—C5 | 1.57 (19) |
O2—C3—C4—O3 | −0.19 (19) | C11—N1—C7—C8 | −0.4 (2) |
C2—C3—C4—O3 | −179.62 (12) | N1—C7—C8—O5 | −179.23 (13) |
O2—C3—C4—C5 | 179.52 (12) | N1—C7—C8—C9 | 0.2 (2) |
C2—C3—C4—C5 | 0.09 (18) | O5—C8—C9—C10 | 179.88 (14) |
O3—C4—C5—C6 | −178.41 (13) | C7—C8—C9—C10 | 0.5 (2) |
C3—C4—C5—C6 | 1.89 (19) | C8—C9—C10—C11 | −0.9 (2) |
O3—C4—C5—Cl2 | 0.74 (19) | C7—N1—C11—C10 | 0.0 (2) |
C3—C4—C5—Cl2 | −178.96 (9) | C9—C10—C11—N1 | 0.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.911 (18) | 1.867 (18) | 2.7461 (17) | 161.4 (18) |
O4—H4···O1 | 0.77 (3) | 2.21 (3) | 2.6348 (16) | 115 (2) |
O4—H4···O6 | 0.77 (3) | 2.04 (3) | 2.7187 (17) | 147 (3) |
O5—H5···O1 | 0.85 (3) | 1.80 (3) | 2.6474 (17) | 172 (3) |
O6—H6A···O2i | 0.80 (3) | 2.21 (3) | 2.8959 (18) | 144 (3) |
O6—H6A···O3i | 0.80 (3) | 2.50 (3) | 3.1220 (17) | 136 (3) |
O6—H6B···O1ii | 0.84 (4) | 2.11 (3) | 2.9281 (18) | 164 (3) |
C7—H7···O6 | 0.95 | 2.59 | 3.484 (2) | 157 |
C9—H9···O4iii | 0.95 | 2.40 | 3.3084 (18) | 160 |
C10—H10···O3iv | 0.95 | 2.38 | 3.163 (2) | 140 |
Symmetry codes: (i) x, y, z−1; (ii) −x+2, −y+1, −z; (iii) x, y−1, z; (iv) x, y−1, z−1. |
Experimental details
Crystal data | |
Chemical formula | C5H6NO+·C6HCl2O4−·H2O |
Mr | 322.10 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 180 |
a, b, c (Å) | 7.4893 (13), 9.6650 (17), 9.9305 (17) |
α, β, γ (°) | 88.129 (5), 68.404 (6), 67.980 (4) |
V (Å3) | 614.95 (18) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.55 |
Crystal size (mm) | 0.20 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID-II diffractometer |
Absorption correction | Numerical (ABSCOR; Higashi, 1999) |
Tmin, Tmax | 0.907, 0.973 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12237, 3572, 2952 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.088, 1.07 |
No. of reflections | 3572 |
No. of parameters | 201 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.60, −0.29 |
Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.911 (18) | 1.867 (18) | 2.7461 (17) | 161.4 (18) |
O4—H4···O1 | 0.77 (3) | 2.21 (3) | 2.6348 (16) | 115 (2) |
O4—H4···O6 | 0.77 (3) | 2.04 (3) | 2.7187 (17) | 147 (3) |
O5—H5···O1 | 0.85 (3) | 1.80 (3) | 2.6474 (17) | 172 (3) |
O6—H6A···O2i | 0.80 (3) | 2.21 (3) | 2.8959 (18) | 144 (3) |
O6—H6A···O3i | 0.80 (3) | 2.50 (3) | 3.1220 (17) | 136 (3) |
O6—H6B···O1ii | 0.84 (4) | 2.11 (3) | 2.9281 (18) | 164 (3) |
C7—H7···O6 | 0.95 | 2.59 | 3.484 (2) | 157 |
C9—H9···O4iii | 0.95 | 2.40 | 3.3084 (18) | 160 |
C10—H10···O3iv | 0.95 | 2.38 | 3.163 (2) | 140 |
Symmetry codes: (i) x, y, z−1; (ii) −x+2, −y+1, −z; (iii) x, y−1, z; (iv) x, y−1, z−1. |
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o2467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K., Nagoshi, H. & Ishida, H. (2009a). Acta Cryst. C65, o273–o277. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K., Nagoshi, H. & Ishida, H. (2009b). Acta Cryst. E65, o614. Web of Science CSD CrossRef IUCr Journals Google Scholar
Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title salt hydrate, C5H6NO+.C6HCl2O4-.H2O, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in substituted-pyridine – chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) systems (Gotoh & Ishida, 2009; Gotoh et al., 2009a,b).
In (I), the three components are held together by O—H···O and N—H···O hydrogen bonds, as well as C—H···O contacts (Fig. 1 and Table 1) forming a double-tape structure along the c direction. The connections between individual tapes, Fig. 2, are accomplished via Owater–H···O hydrogen bonds, Fig. 3. Within each tape, the pyridinium N1/C7–C11 and the anion C1–C6 rings are almost coplanar, with a dihedral angle of 2.35 (7)° between them. A π–π interaction between the anion rings is also present within the double-tape structure; the centroid-centroid distance [Cg1···Cg1iii; symmetry code: (iii) -x + 2, -y + 1, -z + 1] is 3.6729 (11) Å and the inter-planar separation is 3.2656 (6) Å. The double-tapes are connected by C—H···O contacts, resulting in a layer parallel to the (100) plane, Table 1.