organic compounds
4-(2-Hydroxyethyl)anilinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate
aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au
In the structure of the title compound, C8H12NO+·C7H5O6S−·H2O, isolated from the reaction of 2-(4-aminophenyl)ethanol with 5-sulfosalicylic acid, the cations form head-to-tail hydrogen-bonded chains through C11(9) anilinium N+—H⋯Ohydroxyl interactions while the anions also form parallel but C11(8)-linked chains through carboxylic acid O—H⋯Osulfonate interactions. These chains inter-associate through a number of N+—H⋯O and O—H⋯O bridging interactions, giving a two-dimensional array in the ab plane.
Related literature
For the structure of the 2-(4-aminophenyl)ethanol salt of 3,5-dinitrobenzoic acid, see: Smith & Wermuth (2009). For structures of 5-sulfosalicylic acid salts of aniline and substituted anilines, see: Bakasova et al. (1991); Smith (2005); Smith et al. (2005a,b, 2006). For hydrogen-bonding graph-set notation, see: Etter et al. (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis Pro (Oxford Diffraction (2009); cell CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536809049745/tk2580sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809049745/tk2580Isup2.hkl
Compound (I) was synthesized by heating together 1 mmol quantities of 2-(4-aminophenyl)ethanol with 3-carboxy-4-hydroxybenzenesulfonic acid in 50 ml of 50% ethanol–water under reflux for 10 minutes. After concentration to ca. 30 ml, partial room temperature evaporation of the hot-filtered solution gave pale-brown plates (m. p. 498 K).
Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined (see Table 1 for distances). The H-atoms were included in the
in calculated positions [C–H(aliphatic) = 0.97 Å and C–H(aromatic) = 0.93 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).Data collection: CrysAlis PRO (Oxford Diffraction (2009); cell
CrysAlis PRO (Oxford Diffraction (2009); data reduction: CrysAlis PRO (Oxford Diffraction (2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. Molecular configuration and atom naming scheme for the substituted anilinium cation, the 5-SSA anion and the water molecule of solvation in (I). Inter-species hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The 2-D hydrogen-bonded array in (I) formed through interlinked hydrogen-bonded cation and anion chains extending in the ab plane. Hydrogen-bonding associations are shown as dashed lines. Non-interacting H atoms are omitted for clarity. For symmetry codes, see Table 1. |
C8H12NO+·C7H5O6S−·H2O | Z = 2 |
Mr = 373.37 | F(000) = 392 |
Triclinic, P1 | Dx = 1.510 Mg m−3 |
Hall symbol: -P 1 | Melting point: 498 K |
a = 7.7412 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.7977 (6) Å | Cell parameters from 4875 reflections |
c = 12.8330 (8) Å | θ = 3.2–28.8° |
α = 102.169 (6)° | µ = 0.24 mm−1 |
β = 98.538 (6)° | T = 200 K |
γ = 101.366 (6)° | Plate, pale brown |
V = 820.97 (11) Å3 | 0.40 × 0.40 × 0.20 mm |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 3215 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2756 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω scans | θmax = 26.0°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.934, Tmax = 0.980 | k = −10→10 |
10214 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0575P)2 + 0.1198P] where P = (Fo2 + 2Fc2)/3 |
3215 reflections | (Δ/σ)max = 0.001 |
258 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C8H12NO+·C7H5O6S−·H2O | γ = 101.366 (6)° |
Mr = 373.37 | V = 820.97 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.7412 (6) Å | Mo Kα radiation |
b = 8.7977 (6) Å | µ = 0.24 mm−1 |
c = 12.8330 (8) Å | T = 200 K |
α = 102.169 (6)° | 0.40 × 0.40 × 0.20 mm |
β = 98.538 (6)° |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 3215 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2756 reflections with I > 2σ(I) |
Tmin = 0.934, Tmax = 0.980 | Rint = 0.022 |
10214 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 0.30 e Å−3 |
3215 reflections | Δρmin = −0.30 e Å−3 |
258 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O11A | 0.80608 (18) | 0.87360 (14) | 0.00089 (10) | 0.0341 (4) | |
N4A | 0.78541 (19) | 0.07130 (16) | 0.19112 (12) | 0.0234 (4) | |
C1A | 0.8163 (2) | 0.53103 (17) | 0.13072 (12) | 0.0212 (4) | |
C2A | 0.9359 (2) | 0.51052 (18) | 0.21625 (12) | 0.0244 (4) | |
C3A | 0.9278 (2) | 0.35998 (18) | 0.23691 (13) | 0.0241 (5) | |
C4A | 0.7995 (2) | 0.23068 (17) | 0.17042 (12) | 0.0206 (4) | |
C5A | 0.6827 (2) | 0.24656 (19) | 0.08278 (14) | 0.0299 (5) | |
C6A | 0.6921 (2) | 0.39667 (19) | 0.06356 (14) | 0.0304 (5) | |
C11A | 0.8410 (2) | 0.72115 (19) | 0.00469 (14) | 0.0302 (5) | |
C21A | 0.8142 (2) | 0.69635 (18) | 0.11528 (13) | 0.0247 (4) | |
S5 | 0.31926 (5) | 0.00829 (4) | 0.26512 (3) | 0.0203 (1) | |
O2 | 0.83804 (16) | 0.60833 (15) | 0.51275 (10) | 0.0334 (4) | |
O11 | 0.43638 (16) | 0.62380 (14) | 0.25827 (10) | 0.0310 (4) | |
O12 | 0.67893 (15) | 0.76007 (13) | 0.38590 (10) | 0.0323 (4) | |
O51 | 0.17800 (14) | 0.04515 (12) | 0.19312 (9) | 0.0253 (3) | |
O52 | 0.25277 (15) | −0.07135 (13) | 0.34506 (9) | 0.0289 (4) | |
O53 | 0.43041 (14) | −0.08330 (13) | 0.20599 (9) | 0.0292 (3) | |
C1 | 0.5791 (2) | 0.47935 (17) | 0.36674 (12) | 0.0205 (4) | |
C2 | 0.7134 (2) | 0.47689 (18) | 0.45347 (12) | 0.0226 (4) | |
C3 | 0.7206 (2) | 0.33328 (19) | 0.48234 (13) | 0.0257 (5) | |
C4 | 0.5988 (2) | 0.19310 (18) | 0.42610 (12) | 0.0227 (5) | |
C5 | 0.46674 (19) | 0.19342 (17) | 0.33820 (12) | 0.0192 (4) | |
C6 | 0.45641 (19) | 0.33538 (17) | 0.30967 (12) | 0.0201 (4) | |
C11 | 0.5704 (2) | 0.63262 (18) | 0.33854 (13) | 0.0233 (5) | |
O1W | 0.9577 (2) | 0.04283 (16) | 0.39011 (11) | 0.0352 (4) | |
H2A | 1.02240 | 0.59840 | 0.26020 | 0.0290* | |
H3A | 1.00740 | 0.34710 | 0.29440 | 0.0290* | |
H5A | 0.59910 | 0.15770 | 0.03750 | 0.0360* | |
H6A | 0.61400 | 0.40810 | 0.00480 | 0.0370* | |
H11A | 0.824 (3) | 0.894 (3) | −0.0554 (19) | 0.047 (6)* | |
H12A | 0.75870 | 0.63730 | −0.05290 | 0.0360* | |
H13A | 0.96310 | 0.71970 | −0.00400 | 0.0360* | |
H21A | 0.90780 | 0.77360 | 0.17060 | 0.0300* | |
H22A | 0.70000 | 0.71900 | 0.12720 | 0.0300* | |
H41A | 0.858 (3) | 0.075 (2) | 0.2578 (17) | 0.040 (5)* | |
H42A | 0.818 (3) | 0.009 (3) | 0.1367 (19) | 0.049 (6)* | |
H43A | 0.668 (3) | 0.026 (2) | 0.1963 (15) | 0.035 (5)* | |
H2 | 0.823 (3) | 0.685 (3) | 0.491 (2) | 0.062 (8)* | |
H3 | 0.80840 | 0.33250 | 0.54000 | 0.0310* | |
H4 | 0.60390 | 0.09830 | 0.44620 | 0.0270* | |
H6 | 0.36750 | 0.33520 | 0.25230 | 0.0240* | |
H11 | 0.434 (3) | 0.715 (3) | 0.2491 (17) | 0.047 (6)* | |
H11W | 0.883 (4) | −0.035 (3) | 0.403 (2) | 0.069 (8)* | |
H12W | 1.047 (3) | 0.002 (3) | 0.3819 (17) | 0.046 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O11A | 0.0568 (8) | 0.0265 (6) | 0.0266 (7) | 0.0153 (6) | 0.0133 (6) | 0.0147 (5) |
N4A | 0.0250 (7) | 0.0188 (7) | 0.0293 (8) | 0.0067 (6) | 0.0076 (6) | 0.0093 (6) |
C1A | 0.0239 (8) | 0.0180 (7) | 0.0226 (8) | 0.0051 (6) | 0.0050 (6) | 0.0066 (6) |
C2A | 0.0268 (8) | 0.0188 (7) | 0.0228 (8) | −0.0002 (6) | 0.0006 (6) | 0.0028 (6) |
C3A | 0.0250 (8) | 0.0252 (8) | 0.0217 (8) | 0.0058 (6) | 0.0000 (6) | 0.0085 (6) |
C4A | 0.0227 (8) | 0.0164 (7) | 0.0257 (8) | 0.0067 (6) | 0.0079 (6) | 0.0076 (6) |
C5A | 0.0284 (9) | 0.0190 (8) | 0.0356 (9) | 0.0014 (7) | −0.0066 (7) | 0.0054 (7) |
C6A | 0.0290 (9) | 0.0230 (8) | 0.0341 (9) | 0.0041 (7) | −0.0094 (7) | 0.0087 (7) |
C11A | 0.0428 (10) | 0.0227 (8) | 0.0291 (9) | 0.0100 (7) | 0.0133 (8) | 0.0088 (7) |
C21A | 0.0302 (8) | 0.0182 (7) | 0.0250 (8) | 0.0045 (6) | 0.0040 (7) | 0.0062 (6) |
S5 | 0.0188 (2) | 0.0172 (2) | 0.0251 (2) | 0.0033 (1) | 0.0016 (2) | 0.0087 (2) |
O2 | 0.0322 (7) | 0.0256 (6) | 0.0333 (7) | −0.0010 (5) | −0.0059 (5) | 0.0035 (5) |
O11 | 0.0337 (7) | 0.0180 (6) | 0.0393 (7) | 0.0060 (5) | −0.0028 (5) | 0.0102 (5) |
O12 | 0.0320 (6) | 0.0204 (6) | 0.0399 (7) | 0.0000 (5) | 0.0026 (5) | 0.0062 (5) |
O51 | 0.0224 (6) | 0.0253 (6) | 0.0276 (6) | 0.0033 (5) | −0.0010 (5) | 0.0114 (5) |
O52 | 0.0258 (6) | 0.0283 (6) | 0.0352 (7) | 0.0027 (5) | 0.0032 (5) | 0.0191 (5) |
O53 | 0.0270 (6) | 0.0211 (5) | 0.0377 (7) | 0.0061 (5) | 0.0065 (5) | 0.0032 (5) |
C1 | 0.0206 (7) | 0.0209 (7) | 0.0212 (7) | 0.0058 (6) | 0.0071 (6) | 0.0049 (6) |
C2 | 0.0216 (7) | 0.0229 (8) | 0.0211 (8) | 0.0031 (6) | 0.0050 (6) | 0.0023 (6) |
C3 | 0.0232 (8) | 0.0311 (8) | 0.0225 (8) | 0.0070 (7) | 0.0000 (6) | 0.0085 (7) |
C4 | 0.0248 (8) | 0.0234 (8) | 0.0236 (8) | 0.0085 (6) | 0.0053 (6) | 0.0106 (6) |
C5 | 0.0179 (7) | 0.0193 (7) | 0.0211 (7) | 0.0044 (6) | 0.0053 (6) | 0.0055 (6) |
C6 | 0.0196 (7) | 0.0205 (7) | 0.0211 (7) | 0.0064 (6) | 0.0027 (6) | 0.0066 (6) |
C11 | 0.0236 (8) | 0.0199 (8) | 0.0271 (8) | 0.0056 (6) | 0.0075 (7) | 0.0054 (6) |
O1W | 0.0372 (8) | 0.0354 (7) | 0.0397 (7) | 0.0111 (6) | 0.0129 (6) | 0.0178 (6) |
S5—O51 | 1.4563 (12) | C4A—C5A | 1.384 (2) |
S5—O52 | 1.4581 (12) | C5A—C6A | 1.384 (2) |
S5—O53 | 1.4747 (12) | C11A—C21A | 1.518 (2) |
S5—C5 | 1.7723 (16) | C2A—H2A | 0.9300 |
O11A—C11A | 1.429 (2) | C3A—H3A | 0.9300 |
O11A—H11A | 0.81 (2) | C5A—H5A | 0.9300 |
O2—C2 | 1.348 (2) | C6A—H6A | 0.9300 |
O11—C11 | 1.327 (2) | C11A—H12A | 0.9700 |
O12—C11 | 1.234 (2) | C11A—H13A | 0.9700 |
O2—H2 | 0.80 (3) | C21A—H21A | 0.9700 |
O11—H11 | 0.84 (3) | C21A—H22A | 0.9700 |
O1W—H11W | 0.87 (3) | C1—C2 | 1.413 (2) |
O1W—H12W | 0.85 (2) | C1—C11 | 1.479 (2) |
N4A—C4A | 1.468 (2) | C1—C6 | 1.404 (2) |
N4A—H41A | 0.94 (2) | C2—C3 | 1.398 (2) |
N4A—H42A | 0.89 (2) | C3—C4 | 1.377 (2) |
N4A—H43A | 0.94 (2) | C4—C5 | 1.406 (2) |
C1A—C6A | 1.393 (2) | C5—C6 | 1.387 (2) |
C1A—C2A | 1.394 (2) | C3—H3 | 0.9300 |
C1A—C21A | 1.512 (2) | C4—H4 | 0.9300 |
C2A—C3A | 1.396 (2) | C6—H6 | 0.9300 |
C3A—C4A | 1.379 (2) | ||
O51—S5—O53 | 113.02 (7) | C5A—C6A—H6A | 119.00 |
O51—S5—C5 | 106.82 (7) | C1A—C6A—H6A | 119.00 |
O52—S5—O53 | 110.32 (7) | C21A—C11A—H12A | 110.00 |
O52—S5—C5 | 107.10 (7) | C21A—C11A—H13A | 110.00 |
O53—S5—C5 | 105.72 (7) | H12A—C11A—H13A | 109.00 |
O51—S5—O52 | 113.33 (7) | O11A—C11A—H12A | 110.00 |
C11A—O11A—H11A | 109.8 (18) | O11A—C11A—H13A | 110.00 |
C2—O2—H2 | 109.8 (18) | C1A—C21A—H22A | 108.00 |
C11—O11—H11 | 110.7 (16) | C1A—C21A—H21A | 108.00 |
H11W—O1W—H12W | 102 (3) | H21A—C21A—H22A | 107.00 |
H41A—N4A—H43A | 105.5 (18) | C11A—C21A—H21A | 108.00 |
H41A—N4A—H42A | 110 (2) | C11A—C21A—H22A | 108.00 |
C4A—N4A—H41A | 112.1 (11) | C2—C1—C11 | 119.52 (14) |
C4A—N4A—H43A | 111.1 (12) | C6—C1—C11 | 121.67 (14) |
H42A—N4A—H43A | 110 (2) | C2—C1—C6 | 118.82 (14) |
C4A—N4A—H42A | 108.5 (17) | O2—C2—C3 | 116.62 (14) |
C2A—C1A—C6A | 118.47 (14) | C1—C2—C3 | 120.02 (14) |
C2A—C1A—C21A | 120.69 (14) | O2—C2—C1 | 123.35 (14) |
C6A—C1A—C21A | 120.74 (14) | C2—C3—C4 | 120.56 (15) |
C1A—C2A—C3A | 120.99 (14) | C3—C4—C5 | 119.94 (15) |
C2A—C3A—C4A | 118.74 (14) | C4—C5—C6 | 120.10 (14) |
N4A—C4A—C5A | 118.38 (14) | S5—C5—C4 | 118.07 (12) |
C3A—C4A—C5A | 121.53 (15) | S5—C5—C6 | 121.82 (12) |
N4A—C4A—C3A | 120.08 (14) | C1—C6—C5 | 120.53 (14) |
C4A—C5A—C6A | 119.01 (15) | O11—C11—O12 | 121.98 (15) |
C1A—C6A—C5A | 121.20 (15) | O11—C11—C1 | 115.13 (14) |
O11A—C11A—C21A | 106.35 (13) | O12—C11—C1 | 122.89 (14) |
C1A—C21A—C11A | 115.37 (13) | C4—C3—H3 | 120.00 |
C1A—C2A—H2A | 120.00 | C2—C3—H3 | 120.00 |
C3A—C2A—H2A | 119.00 | C3—C4—H4 | 120.00 |
C4A—C3A—H3A | 121.00 | C5—C4—H4 | 120.00 |
C2A—C3A—H3A | 121.00 | C1—C6—H6 | 120.00 |
C4A—C5A—H5A | 121.00 | C5—C6—H6 | 120.00 |
C6A—C5A—H5A | 120.00 | ||
O52—S5—C5—C4 | 48.08 (14) | O11A—C11A—C21A—C1A | 170.97 (13) |
O52—S5—C5—C6 | −133.01 (13) | C6—C1—C2—O2 | 179.56 (14) |
O53—S5—C5—C4 | −69.56 (13) | C6—C1—C2—C3 | −1.1 (2) |
O53—S5—C5—C6 | 109.35 (13) | C11—C1—C2—O2 | −0.7 (2) |
O51—S5—C5—C6 | −11.28 (15) | C11—C1—C2—C3 | 178.66 (14) |
O51—S5—C5—C4 | 169.81 (12) | C2—C1—C6—C5 | 0.2 (2) |
C6A—C1A—C21A—C11A | −59.7 (2) | C11—C1—C6—C5 | −179.57 (14) |
C2A—C1A—C21A—C11A | 123.94 (16) | C2—C1—C11—O11 | −177.96 (14) |
C6A—C1A—C2A—C3A | −2.3 (2) | C2—C1—C11—O12 | 1.9 (2) |
C21A—C1A—C2A—C3A | 174.16 (15) | C6—C1—C11—O11 | 1.8 (2) |
C2A—C1A—C6A—C5A | 2.1 (2) | C6—C1—C11—O12 | −178.40 (15) |
C21A—C1A—C6A—C5A | −174.34 (15) | O2—C2—C3—C4 | −179.87 (14) |
C1A—C2A—C3A—C4A | 0.5 (2) | C1—C2—C3—C4 | 0.7 (2) |
C2A—C3A—C4A—C5A | 1.6 (2) | C2—C3—C4—C5 | 0.6 (2) |
C2A—C3A—C4A—N4A | −178.94 (14) | C3—C4—C5—S5 | 177.44 (12) |
N4A—C4A—C5A—C6A | 178.74 (15) | C3—C4—C5—C6 | −1.5 (2) |
C3A—C4A—C5A—C6A | −1.8 (2) | S5—C5—C6—C1 | −177.77 (12) |
C4A—C5A—C6A—C1A | −0.1 (2) | C4—C5—C6—C1 | 1.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O12 | 0.80 (3) | 1.93 (3) | 2.6302 (18) | 145 (2) |
O11—H11···O53i | 0.84 (3) | 1.97 (3) | 2.8034 (17) | 172 (2) |
O11A—H11A···O51ii | 0.81 (2) | 1.95 (2) | 2.7444 (17) | 169 (2) |
N4A—H41A···O1W | 0.94 (2) | 1.86 (2) | 2.784 (2) | 166.5 (19) |
N4A—H42A···O11Aiii | 0.89 (2) | 1.87 (2) | 2.7287 (19) | 161 (2) |
N4A—H43A···O53 | 0.94 (2) | 1.94 (2) | 2.8689 (19) | 175.6 (18) |
O1W—H11W···O12iii | 0.87 (3) | 2.10 (3) | 2.9396 (19) | 164 (2) |
O1W—H12W···O52iv | 0.85 (2) | 1.92 (2) | 2.759 (2) | 171 (2) |
C3A—H3A···O2v | 0.93 | 2.50 | 3.373 (2) | 157 |
C6—H6···O51 | 0.93 | 2.57 | 2.9437 (19) | 104 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z; (iii) x, y−1, z; (iv) x+1, y, z; (v) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C8H12NO+·C7H5O6S−·H2O |
Mr | 373.37 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 200 |
a, b, c (Å) | 7.7412 (6), 8.7977 (6), 12.8330 (8) |
α, β, γ (°) | 102.169 (6), 98.538 (6), 101.366 (6) |
V (Å3) | 820.97 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.40 × 0.40 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini-S CCD-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.934, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10214, 3215, 2756 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.087, 0.99 |
No. of reflections | 3215 |
No. of parameters | 258 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.30 |
Computer programs: CrysAlis PRO (Oxford Diffraction (2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O12 | 0.80 (3) | 1.93 (3) | 2.6302 (18) | 145 (2) |
O11—H11···O53i | 0.84 (3) | 1.97 (3) | 2.8034 (17) | 172 (2) |
O11A—H11A···O51ii | 0.81 (2) | 1.95 (2) | 2.7444 (17) | 169 (2) |
N4A—H41A···O1W | 0.94 (2) | 1.86 (2) | 2.784 (2) | 166.5 (19) |
N4A—H42A···O11Aiii | 0.89 (2) | 1.87 (2) | 2.7287 (19) | 161 (2) |
N4A—H43A···O53 | 0.94 (2) | 1.94 (2) | 2.8689 (19) | 175.6 (18) |
O1W—H11W···O12iii | 0.87 (3) | 2.10 (3) | 2.9396 (19) | 164 (2) |
O1W—H12W···O52iv | 0.85 (2) | 1.92 (2) | 2.759 (2) | 171 (2) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z; (iii) x, y−1, z; (iv) x+1, y, z. |
Acknowledgements
The authors acknowledge financial support from the Australian Research Council and the School of Physical and Chemical Sciences, Queensland University of Technology.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bakasova, Z. B., Abdybaliev, D. A., Sharipov, Kh. T., Akbaev, A. A., Ibragimov, R. T., Talipov, S. A. & Ismankulov, A. I. (1991). Uzbek. Khim. Zh. pp. 22–25. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. (2005). Acta Cryst. E61, o3398–o3400. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2009). Acta Cryst. E65, o2109. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o2313–o2315. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2005a). Acta Cryst. C61, o105–o109. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. E61, o313–o316. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We recently described the hydrogen bonding in the 1:1 proton-transfer salt of 3,5-dinitrobenzoic acid with 2-(4-aminophenyl)ethanol (Smith & Wermuth, 2009), which was the first reported structure of any compound of this aromatic Lewis base. Because of the common use of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA) in the formation of stable crystalline compounds of Lewis bases, in particular the analogous aniline (Bakasova et al., 1991), 3-substituted anilines 3-methoxyaniline (Smith et al., 2006), 3-carboxyaniline (Smith, 2005), and the 4-X-substituted anilines: X = F, Cl, Br (Smith et al., 2005a) and X = CO2H (Smith et al., 2005b). We therefore carried out the 1:1 stoichiometric reaction of 5-SSA with this aniline-substituted alcohol in 50% ethanol-water. The result was a 1:1 salt 4-(2-hydroxyethyl)anilinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate, C8H12NO+ C7H5O6S-. H2O, (I), the structure of which is reported here.
With (I) (Fig. 1), proton transfer occurs and the resulting anilinium group forms head-to-tail hydrogen-bonded cation chains through anilinium N+–H···Ohydroxyl interactions [graph set C9 (Etter et al., 1990)]. The anions also form similar head-to-tail hydrogen-bonded chains through carboxylic acid O–H···Osulfonate interactions (graph set C8) and lie parallel to the cation chains, extending along the b direction. These chains associate through N+–H···Osulfonate, ···Ocarboxyl, ···Ohydroxyl and ···Owater interactions as well as through hydroxyl O–H···Osulfonate, water O–H···Osulfonate and O–H···Ocarboxyl bridging interactions (Table 1). The result is a 2-D array (Fig. 2) in which there are also very weak cation–anion aromatic ring π–π interactions [ring centroid separation, 3.8552 (10) Å].
In the 5-SSA anion, the carboxylic acid group is essentially co-planar with the benzene ring [torsion angle C6–C1–C11–O12, -178.40 (15)°] because of the presence of the common intramolecular phenol O–H···Ocarboxyl hydrogen bond [2.6302 (18) Å].