organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Hy­droxy­ethyl)anilinium 3-carb­­oxy-4-hy­droxy­benzene­sulfonate monohydrate

aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 16 November 2009; accepted 20 November 2009; online 25 November 2009)

In the structure of the title compound, C8H12NO+·C7H5O6S·H2O, isolated from the reaction of 2-(4-amino­phen­yl)ethanol with 5-sulfosalicylic acid, the cations form head-to-tail hydrogen-bonded chains through C11(9) anilinium N+—H⋯Ohydrox­yl inter­actions while the anions also form parallel but C11(8)-linked chains through carboxylic acid O—H⋯Osulfonate inter­actions. These chains inter-associate through a number of N+—H⋯O and O—H⋯O bridging inter­actions, giving a two-dimensional array in the ab plane.

Related literature

For the structure of the 2-(4-amino­phen­yl)ethanol salt of 3,5-dinitro­benzoic acid, see: Smith & Wermuth (2009[Smith, G. & Wermuth, U. D. (2009). Acta Cryst. E65, o2109.]). For structures of 5-sulfosalicylic acid salts of aniline and substituted anilines, see: Bakasova et al. (1991[Bakasova, Z. B., Abdybaliev, D. A., Sharipov, Kh. T., Akbaev, A. A., Ibragimov, R. T., Talipov, S. A. & Ismankulov, A. I. (1991). Uzbek. Khim. Zh. pp. 22-25.]); Smith (2005[Smith, G. (2005). Acta Cryst. E61, o3398-o3400.]); Smith et al. (2005a[Smith, G., Wermuth, U. D. & White, J. M. (2005a). Acta Cryst. C61, o105-o109.],b[Smith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. E61, o313-o316.], 2006[Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o2313-o2315.]). For hydrogen-bonding graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12NO+·C7H5O6S·H2O

  • Mr = 373.37

  • Triclinic, [P \overline 1]

  • a = 7.7412 (6) Å

  • b = 8.7977 (6) Å

  • c = 12.8330 (8) Å

  • α = 102.169 (6)°

  • β = 98.538 (6)°

  • γ = 101.366 (6)°

  • V = 820.97 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 200 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 0.980

  • 10214 measured reflections

  • 3215 independent reflections

  • 2756 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 0.99

  • 3215 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O12 0.80 (3) 1.93 (3) 2.6302 (18) 145 (2)
O11—H11⋯O53i 0.84 (3) 1.97 (3) 2.8034 (17) 172 (2)
O11A—H11A⋯O51ii 0.81 (2) 1.95 (2) 2.7444 (17) 169 (2)
N4A—H41A⋯O1W 0.94 (2) 1.86 (2) 2.784 (2) 166.5 (19)
N4A—H42A⋯O11Aiii 0.89 (2) 1.87 (2) 2.7287 (19) 161 (2)
N4A—H43A⋯O53 0.94 (2) 1.94 (2) 2.8689 (19) 175.6 (18)
O1W—H11W⋯O12iii 0.87 (3) 2.10 (3) 2.9396 (19) 164 (2)
O1W—H12W⋯O52iv 0.85 (2) 1.92 (2) 2.759 (2) 171 (2)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z; (iii) x, y-1, z; (iv) x+1, y, z.

Data collection: CrysAlis Pro (Oxford Diffraction (2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

We recently described the hydrogen bonding in the 1:1 proton-transfer salt of 3,5-dinitrobenzoic acid with 2-(4-aminophenyl)ethanol (Smith & Wermuth, 2009), which was the first reported structure of any compound of this aromatic Lewis base. Because of the common use of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA) in the formation of stable crystalline compounds of Lewis bases, in particular the analogous aniline (Bakasova et al., 1991), 3-substituted anilines 3-methoxyaniline (Smith et al., 2006), 3-carboxyaniline (Smith, 2005), and the 4-X-substituted anilines: X = F, Cl, Br (Smith et al., 2005a) and X = CO2H (Smith et al., 2005b). We therefore carried out the 1:1 stoichiometric reaction of 5-SSA with this aniline-substituted alcohol in 50% ethanol-water. The result was a 1:1 salt 4-(2-hydroxyethyl)anilinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate, C8H12NO+ C7H5O6S-. H2O, (I), the structure of which is reported here.

With (I) (Fig. 1), proton transfer occurs and the resulting anilinium group forms head-to-tail hydrogen-bonded cation chains through anilinium N+–H···Ohydroxyl interactions [graph set C9 (Etter et al., 1990)]. The anions also form similar head-to-tail hydrogen-bonded chains through carboxylic acid O–H···Osulfonate interactions (graph set C8) and lie parallel to the cation chains, extending along the b direction. These chains associate through N+–H···Osulfonate, ···Ocarboxyl, ···Ohydroxyl and ···Owater interactions as well as through hydroxyl O–H···Osulfonate, water O–H···Osulfonate and O–H···Ocarboxyl bridging interactions (Table 1). The result is a 2-D array (Fig. 2) in which there are also very weak cation–anion aromatic ring ππ interactions [ring centroid separation, 3.8552 (10) Å].

In the 5-SSA anion, the carboxylic acid group is essentially co-planar with the benzene ring [torsion angle C6–C1–C11–O12, -178.40 (15)°] because of the presence of the common intramolecular phenol O–H···Ocarboxyl hydrogen bond [2.6302 (18) Å].

Related literature top

For the structure of the 2-(4-aminophenyl)ethanol salt of 3,5-dinitrobenzoic acid, see: Smith & Wermuth (2009). For structures of 5-sulfosalicylic acid salts of aniline and substituted anilines, see: Bakasova et al. (1991); Smith (2005); Smith et al. (2005a,b, 2006). For hydrogen-bonding graph-set notation, see: Etter et al. (1990).

Experimental top

Compound (I) was synthesized by heating together 1 mmol quantities of 2-(4-aminophenyl)ethanol with 3-carboxy-4-hydroxybenzenesulfonic acid in 50 ml of 50% ethanol–water under reflux for 10 minutes. After concentration to ca. 30 ml, partial room temperature evaporation of the hot-filtered solution gave pale-brown plates (m. p. 498 K).

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined (see Table 1 for distances). The H-atoms were included in the refinement in calculated positions [C–H(aliphatic) = 0.97 Å and C–H(aromatic) = 0.93 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction (2009); cell refinement: CrysAlis PRO (Oxford Diffraction (2009); data reduction: CrysAlis PRO (Oxford Diffraction (2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the substituted anilinium cation, the 5-SSA anion and the water molecule of solvation in (I). Inter-species hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The 2-D hydrogen-bonded array in (I) formed through interlinked hydrogen-bonded cation and anion chains extending in the ab plane. Hydrogen-bonding associations are shown as dashed lines. Non-interacting H atoms are omitted for clarity. For symmetry codes, see Table 1.
4-(2-Hydroxyethyl)anilinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate top
Crystal data top
C8H12NO+·C7H5O6S·H2OZ = 2
Mr = 373.37F(000) = 392
Triclinic, P1Dx = 1.510 Mg m3
Hall symbol: -P 1Melting point: 498 K
a = 7.7412 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7977 (6) ÅCell parameters from 4875 reflections
c = 12.8330 (8) Åθ = 3.2–28.8°
α = 102.169 (6)°µ = 0.24 mm1
β = 98.538 (6)°T = 200 K
γ = 101.366 (6)°Plate, pale brown
V = 820.97 (11) Å30.40 × 0.40 × 0.20 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3215 independent reflections
Radiation source: Enhance (Mo) X-ray source2756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.934, Tmax = 0.980k = 1010
10214 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.1198P]
where P = (Fo2 + 2Fc2)/3
3215 reflections(Δ/σ)max = 0.001
258 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C8H12NO+·C7H5O6S·H2Oγ = 101.366 (6)°
Mr = 373.37V = 820.97 (11) Å3
Triclinic, P1Z = 2
a = 7.7412 (6) ÅMo Kα radiation
b = 8.7977 (6) ŵ = 0.24 mm1
c = 12.8330 (8) ÅT = 200 K
α = 102.169 (6)°0.40 × 0.40 × 0.20 mm
β = 98.538 (6)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3215 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2756 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.980Rint = 0.022
10214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.30 e Å3
3215 reflectionsΔρmin = 0.30 e Å3
258 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11A0.80608 (18)0.87360 (14)0.00089 (10)0.0341 (4)
N4A0.78541 (19)0.07130 (16)0.19112 (12)0.0234 (4)
C1A0.8163 (2)0.53103 (17)0.13072 (12)0.0212 (4)
C2A0.9359 (2)0.51052 (18)0.21625 (12)0.0244 (4)
C3A0.9278 (2)0.35998 (18)0.23691 (13)0.0241 (5)
C4A0.7995 (2)0.23068 (17)0.17042 (12)0.0206 (4)
C5A0.6827 (2)0.24656 (19)0.08278 (14)0.0299 (5)
C6A0.6921 (2)0.39667 (19)0.06356 (14)0.0304 (5)
C11A0.8410 (2)0.72115 (19)0.00469 (14)0.0302 (5)
C21A0.8142 (2)0.69635 (18)0.11528 (13)0.0247 (4)
S50.31926 (5)0.00829 (4)0.26512 (3)0.0203 (1)
O20.83804 (16)0.60833 (15)0.51275 (10)0.0334 (4)
O110.43638 (16)0.62380 (14)0.25827 (10)0.0310 (4)
O120.67893 (15)0.76007 (13)0.38590 (10)0.0323 (4)
O510.17800 (14)0.04515 (12)0.19312 (9)0.0253 (3)
O520.25277 (15)0.07135 (13)0.34506 (9)0.0289 (4)
O530.43041 (14)0.08330 (13)0.20599 (9)0.0292 (3)
C10.5791 (2)0.47935 (17)0.36674 (12)0.0205 (4)
C20.7134 (2)0.47689 (18)0.45347 (12)0.0226 (4)
C30.7206 (2)0.33328 (19)0.48234 (13)0.0257 (5)
C40.5988 (2)0.19310 (18)0.42610 (12)0.0227 (5)
C50.46674 (19)0.19342 (17)0.33820 (12)0.0192 (4)
C60.45641 (19)0.33538 (17)0.30967 (12)0.0201 (4)
C110.5704 (2)0.63262 (18)0.33854 (13)0.0233 (5)
O1W0.9577 (2)0.04283 (16)0.39011 (11)0.0352 (4)
H2A1.022400.598400.260200.0290*
H3A1.007400.347100.294400.0290*
H5A0.599100.157700.037500.0360*
H6A0.614000.408100.004800.0370*
H11A0.824 (3)0.894 (3)0.0554 (19)0.047 (6)*
H12A0.758700.637300.052900.0360*
H13A0.963100.719700.004000.0360*
H21A0.907800.773600.170600.0300*
H22A0.700000.719000.127200.0300*
H41A0.858 (3)0.075 (2)0.2578 (17)0.040 (5)*
H42A0.818 (3)0.009 (3)0.1367 (19)0.049 (6)*
H43A0.668 (3)0.026 (2)0.1963 (15)0.035 (5)*
H20.823 (3)0.685 (3)0.491 (2)0.062 (8)*
H30.808400.332500.540000.0310*
H40.603900.098300.446200.0270*
H60.367500.335200.252300.0240*
H110.434 (3)0.715 (3)0.2491 (17)0.047 (6)*
H11W0.883 (4)0.035 (3)0.403 (2)0.069 (8)*
H12W1.047 (3)0.002 (3)0.3819 (17)0.046 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O11A0.0568 (8)0.0265 (6)0.0266 (7)0.0153 (6)0.0133 (6)0.0147 (5)
N4A0.0250 (7)0.0188 (7)0.0293 (8)0.0067 (6)0.0076 (6)0.0093 (6)
C1A0.0239 (8)0.0180 (7)0.0226 (8)0.0051 (6)0.0050 (6)0.0066 (6)
C2A0.0268 (8)0.0188 (7)0.0228 (8)0.0002 (6)0.0006 (6)0.0028 (6)
C3A0.0250 (8)0.0252 (8)0.0217 (8)0.0058 (6)0.0000 (6)0.0085 (6)
C4A0.0227 (8)0.0164 (7)0.0257 (8)0.0067 (6)0.0079 (6)0.0076 (6)
C5A0.0284 (9)0.0190 (8)0.0356 (9)0.0014 (7)0.0066 (7)0.0054 (7)
C6A0.0290 (9)0.0230 (8)0.0341 (9)0.0041 (7)0.0094 (7)0.0087 (7)
C11A0.0428 (10)0.0227 (8)0.0291 (9)0.0100 (7)0.0133 (8)0.0088 (7)
C21A0.0302 (8)0.0182 (7)0.0250 (8)0.0045 (6)0.0040 (7)0.0062 (6)
S50.0188 (2)0.0172 (2)0.0251 (2)0.0033 (1)0.0016 (2)0.0087 (2)
O20.0322 (7)0.0256 (6)0.0333 (7)0.0010 (5)0.0059 (5)0.0035 (5)
O110.0337 (7)0.0180 (6)0.0393 (7)0.0060 (5)0.0028 (5)0.0102 (5)
O120.0320 (6)0.0204 (6)0.0399 (7)0.0000 (5)0.0026 (5)0.0062 (5)
O510.0224 (6)0.0253 (6)0.0276 (6)0.0033 (5)0.0010 (5)0.0114 (5)
O520.0258 (6)0.0283 (6)0.0352 (7)0.0027 (5)0.0032 (5)0.0191 (5)
O530.0270 (6)0.0211 (5)0.0377 (7)0.0061 (5)0.0065 (5)0.0032 (5)
C10.0206 (7)0.0209 (7)0.0212 (7)0.0058 (6)0.0071 (6)0.0049 (6)
C20.0216 (7)0.0229 (8)0.0211 (8)0.0031 (6)0.0050 (6)0.0023 (6)
C30.0232 (8)0.0311 (8)0.0225 (8)0.0070 (7)0.0000 (6)0.0085 (7)
C40.0248 (8)0.0234 (8)0.0236 (8)0.0085 (6)0.0053 (6)0.0106 (6)
C50.0179 (7)0.0193 (7)0.0211 (7)0.0044 (6)0.0053 (6)0.0055 (6)
C60.0196 (7)0.0205 (7)0.0211 (7)0.0064 (6)0.0027 (6)0.0066 (6)
C110.0236 (8)0.0199 (8)0.0271 (8)0.0056 (6)0.0075 (7)0.0054 (6)
O1W0.0372 (8)0.0354 (7)0.0397 (7)0.0111 (6)0.0129 (6)0.0178 (6)
Geometric parameters (Å, º) top
S5—O511.4563 (12)C4A—C5A1.384 (2)
S5—O521.4581 (12)C5A—C6A1.384 (2)
S5—O531.4747 (12)C11A—C21A1.518 (2)
S5—C51.7723 (16)C2A—H2A0.9300
O11A—C11A1.429 (2)C3A—H3A0.9300
O11A—H11A0.81 (2)C5A—H5A0.9300
O2—C21.348 (2)C6A—H6A0.9300
O11—C111.327 (2)C11A—H12A0.9700
O12—C111.234 (2)C11A—H13A0.9700
O2—H20.80 (3)C21A—H21A0.9700
O11—H110.84 (3)C21A—H22A0.9700
O1W—H11W0.87 (3)C1—C21.413 (2)
O1W—H12W0.85 (2)C1—C111.479 (2)
N4A—C4A1.468 (2)C1—C61.404 (2)
N4A—H41A0.94 (2)C2—C31.398 (2)
N4A—H42A0.89 (2)C3—C41.377 (2)
N4A—H43A0.94 (2)C4—C51.406 (2)
C1A—C6A1.393 (2)C5—C61.387 (2)
C1A—C2A1.394 (2)C3—H30.9300
C1A—C21A1.512 (2)C4—H40.9300
C2A—C3A1.396 (2)C6—H60.9300
C3A—C4A1.379 (2)
O51—S5—O53113.02 (7)C5A—C6A—H6A119.00
O51—S5—C5106.82 (7)C1A—C6A—H6A119.00
O52—S5—O53110.32 (7)C21A—C11A—H12A110.00
O52—S5—C5107.10 (7)C21A—C11A—H13A110.00
O53—S5—C5105.72 (7)H12A—C11A—H13A109.00
O51—S5—O52113.33 (7)O11A—C11A—H12A110.00
C11A—O11A—H11A109.8 (18)O11A—C11A—H13A110.00
C2—O2—H2109.8 (18)C1A—C21A—H22A108.00
C11—O11—H11110.7 (16)C1A—C21A—H21A108.00
H11W—O1W—H12W102 (3)H21A—C21A—H22A107.00
H41A—N4A—H43A105.5 (18)C11A—C21A—H21A108.00
H41A—N4A—H42A110 (2)C11A—C21A—H22A108.00
C4A—N4A—H41A112.1 (11)C2—C1—C11119.52 (14)
C4A—N4A—H43A111.1 (12)C6—C1—C11121.67 (14)
H42A—N4A—H43A110 (2)C2—C1—C6118.82 (14)
C4A—N4A—H42A108.5 (17)O2—C2—C3116.62 (14)
C2A—C1A—C6A118.47 (14)C1—C2—C3120.02 (14)
C2A—C1A—C21A120.69 (14)O2—C2—C1123.35 (14)
C6A—C1A—C21A120.74 (14)C2—C3—C4120.56 (15)
C1A—C2A—C3A120.99 (14)C3—C4—C5119.94 (15)
C2A—C3A—C4A118.74 (14)C4—C5—C6120.10 (14)
N4A—C4A—C5A118.38 (14)S5—C5—C4118.07 (12)
C3A—C4A—C5A121.53 (15)S5—C5—C6121.82 (12)
N4A—C4A—C3A120.08 (14)C1—C6—C5120.53 (14)
C4A—C5A—C6A119.01 (15)O11—C11—O12121.98 (15)
C1A—C6A—C5A121.20 (15)O11—C11—C1115.13 (14)
O11A—C11A—C21A106.35 (13)O12—C11—C1122.89 (14)
C1A—C21A—C11A115.37 (13)C4—C3—H3120.00
C1A—C2A—H2A120.00C2—C3—H3120.00
C3A—C2A—H2A119.00C3—C4—H4120.00
C4A—C3A—H3A121.00C5—C4—H4120.00
C2A—C3A—H3A121.00C1—C6—H6120.00
C4A—C5A—H5A121.00C5—C6—H6120.00
C6A—C5A—H5A120.00
O52—S5—C5—C448.08 (14)O11A—C11A—C21A—C1A170.97 (13)
O52—S5—C5—C6133.01 (13)C6—C1—C2—O2179.56 (14)
O53—S5—C5—C469.56 (13)C6—C1—C2—C31.1 (2)
O53—S5—C5—C6109.35 (13)C11—C1—C2—O20.7 (2)
O51—S5—C5—C611.28 (15)C11—C1—C2—C3178.66 (14)
O51—S5—C5—C4169.81 (12)C2—C1—C6—C50.2 (2)
C6A—C1A—C21A—C11A59.7 (2)C11—C1—C6—C5179.57 (14)
C2A—C1A—C21A—C11A123.94 (16)C2—C1—C11—O11177.96 (14)
C6A—C1A—C2A—C3A2.3 (2)C2—C1—C11—O121.9 (2)
C21A—C1A—C2A—C3A174.16 (15)C6—C1—C11—O111.8 (2)
C2A—C1A—C6A—C5A2.1 (2)C6—C1—C11—O12178.40 (15)
C21A—C1A—C6A—C5A174.34 (15)O2—C2—C3—C4179.87 (14)
C1A—C2A—C3A—C4A0.5 (2)C1—C2—C3—C40.7 (2)
C2A—C3A—C4A—C5A1.6 (2)C2—C3—C4—C50.6 (2)
C2A—C3A—C4A—N4A178.94 (14)C3—C4—C5—S5177.44 (12)
N4A—C4A—C5A—C6A178.74 (15)C3—C4—C5—C61.5 (2)
C3A—C4A—C5A—C6A1.8 (2)S5—C5—C6—C1177.77 (12)
C4A—C5A—C6A—C1A0.1 (2)C4—C5—C6—C11.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O120.80 (3)1.93 (3)2.6302 (18)145 (2)
O11—H11···O53i0.84 (3)1.97 (3)2.8034 (17)172 (2)
O11A—H11A···O51ii0.81 (2)1.95 (2)2.7444 (17)169 (2)
N4A—H41A···O1W0.94 (2)1.86 (2)2.784 (2)166.5 (19)
N4A—H42A···O11Aiii0.89 (2)1.87 (2)2.7287 (19)161 (2)
N4A—H43A···O530.94 (2)1.94 (2)2.8689 (19)175.6 (18)
O1W—H11W···O12iii0.87 (3)2.10 (3)2.9396 (19)164 (2)
O1W—H12W···O52iv0.85 (2)1.92 (2)2.759 (2)171 (2)
C3A—H3A···O2v0.932.503.373 (2)157
C6—H6···O510.932.572.9437 (19)104
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x+1, y, z; (v) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H12NO+·C7H5O6S·H2O
Mr373.37
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)7.7412 (6), 8.7977 (6), 12.8330 (8)
α, β, γ (°)102.169 (6), 98.538 (6), 101.366 (6)
V3)820.97 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.934, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
10214, 3215, 2756
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 0.99
No. of reflections3215
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: CrysAlis PRO (Oxford Diffraction (2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O120.80 (3)1.93 (3)2.6302 (18)145 (2)
O11—H11···O53i0.84 (3)1.97 (3)2.8034 (17)172 (2)
O11A—H11A···O51ii0.81 (2)1.95 (2)2.7444 (17)169 (2)
N4A—H41A···O1W0.94 (2)1.86 (2)2.784 (2)166.5 (19)
N4A—H42A···O11Aiii0.89 (2)1.87 (2)2.7287 (19)161 (2)
N4A—H43A···O530.94 (2)1.94 (2)2.8689 (19)175.6 (18)
O1W—H11W···O12iii0.87 (3)2.10 (3)2.9396 (19)164 (2)
O1W—H12W···O52iv0.85 (2)1.92 (2)2.759 (2)171 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x+1, y, z.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council and the School of Physical and Chemical Sciences, Queensland University of Technology.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBakasova, Z. B., Abdybaliev, D. A., Sharipov, Kh. T., Akbaev, A. A., Ibragimov, R. T., Talipov, S. A. & Ismankulov, A. I. (1991). Uzbek. Khim. Zh. pp. 22–25.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. (2005). Acta Cryst. E61, o3398–o3400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2009). Acta Cryst. E65, o2109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o2313–o2315.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2005a). Acta Cryst. C61, o105–o109.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. E61, o313–o316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds