inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium scandium diphosphate, NaScP2O7, isotypic with α-NaTi(III)P2O7

aMoravian Museum, Department of Mineralogy and Petrography, Zelný trh 6, 65937 Brno, Czech Republic, bMasaryk University, Institute of Geological Sciences, Kotlářská 2, 61137 Brno, Czech Republic, and cMasaryk University, Department of Inorganic Chemistry, Kotlářská 2, 61137 Brno, Czech Republic
*Correspondence e-mail: jcemp@sci.muni.cz

(Received 26 October 2009; accepted 3 November 2009; online 7 November 2009)

Crystals of the title compound, NaScP2O7, were grown by a flux method. The crystal structure is isotypic with those of α-NaTiP2O7, NaYbP2O7 and NaLuP2O7, and is closely related to that of NaYP2O7. The structural set-up consists of a three-dimensional framework of P2O7 units that are corner-shared by ScO6 octa­hedra, forming tunnels running parallel to [010]. The Na atoms are situated in the tunnels and are surrounded by nine O atoms in a distorted environment.

Related literature

Previous X-ray powder data of NaScP2O7 were reported by Vitins et al. (2000[Vitins, G., Kanepe, Z., Vitins, A., Ronis, J., Dindune, A. & Lusis, A. (2000). J. Solid State Electrochem. 4, 146-152.]). NaScP2O7 is isotypic with α-NaTiP2O7 (Leclaire et al., 1988[Leclaire, A., Benmoussa, A., Borel, M. M., Grandin, A. & Raveau, B. (1988). J. Solid State Chem. 77, 299-305.]), NaYbP2O7 (Férid et al., 2004[Férid, M., Horchani-Naifer, K. & Trabelsi-Ayedi, M. (2004). Z. Kristallogr. 219, 353-354.]) and NaLuP2O7 (Yuan et al., 2007[Yuan, J.-L., Zhang, H., Chen, H.-H., Yang, X.-X., Zhao, J.-T. & Gu, M. (2007). J. Solid State Chem. 180, 3381-3387.]) and shows similar structural features as NaYP2O7 (Hamady & Jouini, 1996[Hamady, A. & Jouini, T. (1996). Acta Cryst. C52, 2949-2951.]). Both structure types are topologically related to β-cristobalite (Leclaire et al., 1988[Leclaire, A., Benmoussa, A., Borel, M. M., Grandin, A. & Raveau, B. (1988). J. Solid State Chem. 77, 299-305.]). For a detailed review on the structures of AIMIIIP2O7-type diphosphates, see: Li et al. (2005[Li, M.-R., Liu, W., Chen, H.-H., Yang, X.-X., Wei, Z.-B., Cao, D.-H., Gu, M. & Zhao, J.-T. (2005). Eur. J. Inorg. Chem. pp. 4693-4696.]); Schwendtner & Kolitsch (2004[Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79-i83.]). For possible applications as scintillators or phosphor materials based on AIMIIIP2O7-type diphosphates, see: Hizhnyi et al. (2007[Hizhnyi, Yu., Gomenyuk, O., Nedilko, S., Oliynyk, A., Okhrimenko, B. & Bojko, V. (2007). Radiat. Meas. 42, 719-722.], 2008[Hizhnyi, Yu., Oliynyk, A., Gomenyuk, O., Nedilko, S., Nagornyi, P., Bojko, R. & Bojko, V. (2008). Opt. Mater. 30, 687-689.]). For background to structural parameters, see: Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]); Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]).

Experimental

Crystal data
  • NaScP2O7

  • Mr = 241.89

  • Monoclinic, P 21 /n

  • a = 8.9044 (18) Å

  • b = 5.3300 (11) Å

  • c = 12.516 (3) Å

  • β = 104.11 (3)°

  • V = 576.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 293 K

  • 0.40 × 0.15 × 0.05 mm

Data collection
  • Kuma KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.067, Tmax = 0.093

  • 5082 measured reflections

  • 1018 independent reflections

  • 932 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.082

  • S = 1.18

  • 1018 reflections

  • 101 parameters

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sc—O3 2.0217 (19)
Sc—O6i 2.0770 (17)
Sc—O7ii 2.1112 (17)
Sc—O1 2.1220 (16)
Sc—O2 2.1220 (16)
Sc—O4 2.1506 (18)
P1—O6 1.5088 (17)
P1—O7 1.5254 (17)
P1—O4 1.5313 (18)
P1—O5iii 1.6114 (17)
P2—O3 1.5013 (19)
P2—O1iv 1.5278 (16)
P2—O2v 1.5332 (16)
P2—O5 1.6151 (17)
P1vi—O5—P2 125.47 (10)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y, -z+1; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 2003[Dowty, E. (2003). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

AIMIIITV2O7-type compounds recently have received an increased attention, partly due to their possible applications as scintillators or phosphor materials (Hizhnyi et al., 2007; Hizhnyi et al., 2008). So far, the AIMIIIP2O7-type diphosphates are known to adopt eight different structure types which depends on the ratio of ionic radii of the alkali metal and the rare earth element or the three-valent metal MIII. Among the eight different structure types, the KAlP2O7-type structures are most common. For a detailed review including also diarsenates, see: Schwendtner & Kolitsch (2004); Li et al. (2005). In this article we present the structure of NaScP2O7 determined from single-crystal x-ray diffaction data. Previous X-ray powder data of NaScP2O7 were reported by Vitins et al. (2000). However, authors could not index all reflections at that time, probably because of by-products. The crystal structure of the title compound is isotypic with α-NaTiP2O7 (Leclaire et al., 1988), NaYbP2O7 (Férid et al., 2004) and NaLuP2O7 (Yuan et al., 2007). It is also closely related to that of NaYP2O7 (Hamady and Jouini, 1996) and β-cristobalite (Leclaire et al., 1988).

All atoms in the crystal structure occupy general positions. The structure is characterized by a three-dimensional framework of PO4 tetrahedra (forming P2O7 groups via corner-sharing) and ScO6 octahedra leading to narrow tunnels parallel to [010] which are occupied by Na atoms (Fig. 1). One ScO6 octahedron is corner-linked to six tetrahedra of six different diphosphate groups, which are all oriented approximately perpendicular to (001) (Fig. 2). Tunnels are formed by stacking pseudohexagonal rings of [Sc2P4O22] units. A cage enclosing one Na atom is formed by three P2O7 groups, connected to four ScO6 octahedra (Fig. 3).

The P—O bond-lengths range between 1.5088 (17) Å and 1.5332 (16) Å for terminal O of the diphosphate group that are connected to octahedra. The P1—O5bridge—P2 angle is 125.47 (10) °, and corresponding bond lengths to the bridging O atom are 1.6114 (17) Å and 1.6151 (17) Å for <P1—O5> and <P2—O5>, respectively. The average Sc—O bond length is 2.101 Å, corresponding well with the average value for oxide compounds (2.105 Å; Brese & O'Keeffe, 1991). The ScO6 octahedron is significantly less distorted (in terms of quadatic elongation; Robinson et al., 1971) in comparison with the equivalent polyhedra in α-NaTi3+P2O7, NaLuP2O7 and NaYP2O7; the polyhedral distortion is the lowest in NaYbP2O7 structure.

Related literature top

Previous X-ray powder data of NaScP2O7 were reported by Vitins et al. (2000). NaScP2O7 is isotypic with α-NaTiP2O7 (Leclaire et al., 1988), NaYbP2O7 (Férid et al., 2004) and NaLuP2O7 (Yuan et al., 2007) and shows similar structural features to NaYP2O7 (Hamady & Jouini, 1996). Both structure types are topologically related to β-cristobalite (Leclaire et al., 1988). For a detailed review on the structures of AIMIIIP2O7-type diphosphates, see: Li et al. (2005); Schwendtner & Kolitsch (2004). For possible applications as scintillators or phosphor materials based on AIMIIIP2O7-type diphosphates, see: Hizhnyi et al. (2007, 2008). For background to structural parameters, see: Brese & O'Keeffe (1991); Robinson et al. (1971).

Experimental top

NaScP2O7 crystals were grown by the flux-growth technique. The flux, sodium hexametaphosphate (NaPO3)6 (purity 3 N) was mixed together with Sc2O3 (purity 4 N) at a molar ratio of 6:1. The mixture was filled into a platinum crucible, covered by a loose fitting lid, and heated up to 1593 K within 3 h. The temperature was held for 24 h and afterwards slowly cooled down to 1503 K in the course of 72 h. The solidified flux was dissolved in hot water and crystals of NaScP2O7 were mechanically separated. The procedure produced transparent to translucent, colorless skeletal aggregates of tabular to acicular crystals, up to 23 mm in lengths. A fragment of a crystal was used for single-crystal structure determination.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the NaScP2O7 framework structure projected down [010]. Diphosphate groups are corner-linked to the deformed ScO6 octahedra. Tunnels parallel to [010] are occupied by nine-coordinated atoms of Na. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View on six P2O7 groups corner-linked to the ScO6 polyhedron.
[Figure 3] Fig. 3. Cage formed by three diphosphate groups and four ScO6 polyhedra enclosing the Na cation.
Sodium scandium diphosphate top
Crystal data top
NaScP2O7F(000) = 472
Mr = 241.89Dx = 2.789 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5348 reflections
a = 8.9044 (18) Åθ = 4.2–27.2°
b = 5.3300 (11) ŵ = 1.89 mm1
c = 12.516 (3) ÅT = 293 K
β = 104.11 (3)°Platy to fibrous fragment, colourless
V = 576.1 (2) Å30.40 × 0.15 × 0.05 mm
Z = 4
Data collection top
Kuma KM-4-CCD
diffractometer
1018 independent reflections
Radiation source: fine-focus sealed tube932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0.06 pixels mm-1θmax = 25.0°, θmin = 4.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2003)
k = 46
Tmin = 0.067, Tmax = 0.093l = 1414
5082 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.089P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max < 0.001
S = 1.18Δρmax = 0.46 e Å3
1018 reflectionsΔρmin = 0.46 e Å3
101 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.080 (5)
Crystal data top
NaScP2O7V = 576.1 (2) Å3
Mr = 241.89Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9044 (18) ŵ = 1.89 mm1
b = 5.3300 (11) ÅT = 293 K
c = 12.516 (3) Å0.40 × 0.15 × 0.05 mm
β = 104.11 (3)°
Data collection top
Kuma KM-4-CCD
diffractometer
1018 independent reflections
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2003)
932 reflections with I > 2σ(I)
Tmin = 0.067, Tmax = 0.093Rint = 0.028
5082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025101 parameters
wR(F2) = 0.0820 restraints
S = 1.18Δρmax = 0.46 e Å3
1018 reflectionsΔρmin = 0.46 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sc0.26720 (5)0.26098 (7)0.52783 (4)0.0137 (2)
P10.06473 (7)0.22372 (11)0.61678 (5)0.0140 (2)
P20.52089 (7)0.25413 (10)0.35283 (5)0.0139 (2)
Na0.35939 (11)0.23101 (18)0.81018 (9)0.0278 (3)
O10.39845 (17)0.4953 (3)0.65350 (12)0.0177 (4)
O20.36250 (17)0.0381 (3)0.63494 (13)0.0182 (4)
O30.4256 (2)0.2456 (3)0.43658 (14)0.0210 (4)
O40.10881 (19)0.2727 (3)0.63286 (14)0.0187 (4)
O50.39984 (18)0.2187 (3)0.23463 (13)0.0175 (4)
O60.16444 (17)0.4047 (3)0.53739 (12)0.0220 (4)
O70.10300 (18)0.0507 (3)0.58783 (12)0.0190 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sc0.0124 (3)0.0152 (3)0.0135 (3)0.00023 (15)0.0032 (2)0.00014 (16)
P10.0126 (4)0.0155 (4)0.0136 (4)0.0001 (2)0.0025 (3)0.0002 (2)
P20.0127 (4)0.0156 (4)0.0134 (4)0.0001 (2)0.0033 (3)0.0003 (2)
Na0.0270 (7)0.0245 (7)0.0318 (7)0.0010 (4)0.0069 (5)0.0003 (4)
O10.0189 (8)0.0161 (9)0.0173 (8)0.0021 (6)0.0028 (6)0.0000 (6)
O20.0190 (8)0.0172 (9)0.0190 (8)0.0026 (6)0.0055 (6)0.0014 (7)
O30.0208 (8)0.0240 (11)0.0196 (10)0.0009 (6)0.0077 (7)0.0001 (6)
O40.0160 (8)0.0238 (10)0.0175 (9)0.0013 (6)0.0062 (7)0.0020 (6)
O50.0149 (9)0.0220 (10)0.0156 (9)0.0018 (6)0.0037 (7)0.0005 (6)
O60.0240 (9)0.0188 (10)0.0215 (8)0.0020 (7)0.0022 (7)0.0026 (7)
O70.0205 (8)0.0168 (9)0.0193 (8)0.0009 (7)0.0041 (6)0.0006 (7)
Geometric parameters (Å, º) top
Sc—O32.0217 (19)P2—O2v1.5332 (16)
Sc—O6i2.0770 (17)P2—O51.6151 (17)
Sc—O7ii2.1112 (17)Na—O12.5066 (18)
Sc—O12.1220 (16)Na—O7vi2.5176 (19)
Sc—O22.1220 (16)Na—O4vii2.5410 (19)
Sc—O42.1506 (18)Na—O2vi2.5597 (19)
P1—O61.5088 (17)Na—O22.6264 (19)
P1—O71.5254 (17)Na—O42.746 (2)
P1—O41.5313 (18)Na—O1vii2.7505 (19)
P1—O5iii1.6114 (17)Na—O4vi2.9710 (19)
P2—O31.5013 (19)Na—O6viii2.992 (2)
P2—O1iv1.5278 (16)
O3—Sc—O6i96.54 (6)O4vii—Na—O2vi115.31 (6)
O3—Sc—O7ii93.04 (7)O1—Na—O267.77 (6)
O6i—Sc—O7ii91.19 (6)O7vi—Na—O2119.51 (6)
O3—Sc—O196.23 (7)O4vii—Na—O271.71 (6)
O6i—Sc—O184.07 (7)O2vi—Na—O2130.74 (5)
O7ii—Sc—O1170.01 (6)O1—Na—O464.06 (6)
O3—Sc—O295.73 (6)O7vi—Na—O4143.35 (6)
O6i—Sc—O2164.29 (6)O4vii—Na—O4108.52 (6)
O7ii—Sc—O297.93 (7)O2vi—Na—O469.49 (6)
O1—Sc—O284.87 (7)O2—Na—O462.69 (6)
O3—Sc—O4176.82 (7)O1—Na—O1vii131.81 (5)
O6i—Sc—O485.62 (6)O7vi—Na—O1vii141.08 (7)
O7ii—Sc—O489.25 (6)O4vii—Na—O1vii63.57 (5)
O1—Sc—O481.63 (6)O2vi—Na—O1vii56.31 (6)
O2—Sc—O481.75 (6)O2—Na—O1vii93.88 (6)
O6—P1—O7113.28 (9)O4—Na—O1vii67.92 (5)
O6—P1—O4112.98 (9)O1—Na—O4vi67.56 (5)
O7—P1—O4110.77 (9)O7vi—Na—O4vi53.79 (5)
O6—P1—O5iii105.42 (9)O4vii—Na—O4vi150.38 (8)
O7—P1—O5iii108.54 (9)O2vi—Na—O4vi60.19 (5)
O4—P1—O5iii105.29 (10)O2—Na—O4vi135.34 (6)
O3—P2—O1iv114.55 (9)O4—Na—O4vi97.26 (6)
O3—P2—O2v113.07 (9)O1vii—Na—O4vi116.03 (6)
O1iv—P2—O2v110.27 (9)O1—Na—O6viii159.25 (6)
O3—P2—O5105.75 (10)O7vi—Na—O6viii83.21 (6)
O1iv—P2—O5105.78 (9)O4vii—Na—O6viii61.94 (5)
O2v—P2—O5106.74 (9)O2vi—Na—O6viii67.85 (6)
O1—Na—O7vi82.54 (6)O2—Na—O6viii132.80 (6)
O1—Na—O4vii137.09 (7)O4—Na—O6viii123.78 (6)
O7vi—Na—O4vii106.18 (6)O1vii—Na—O6viii58.46 (5)
O1—Na—O2vi101.72 (6)O4vi—Na—O6viii91.81 (5)
O7vi—Na—O2vi105.53 (6)P1ix—O5—P2125.47 (10)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+1/2, y+1/2, z+3/2; (vii) x+1/2, y1/2, z+3/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaNaScP2O7
Mr241.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.9044 (18), 5.3300 (11), 12.516 (3)
β (°) 104.11 (3)
V3)576.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.40 × 0.15 × 0.05
Data collection
DiffractometerKuma KM-4-CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis CCD; Oxford Diffraction, 2003)
Tmin, Tmax0.067, 0.093
No. of measured, independent and
observed [I > 2σ(I)] reflections
5082, 1018, 932
Rint0.028
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.082, 1.18
No. of reflections1018
No. of parameters101
Δρmax, Δρmin (e Å3)0.46, 0.46

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2003).

Selected geometric parameters (Å, º) top
Sc—O32.0217 (19)P1—O71.5254 (17)
Sc—O6i2.0770 (17)P1—O41.5313 (18)
Sc—O7ii2.1112 (17)P1—O5iii1.6114 (17)
Sc—O12.1220 (16)P2—O31.5013 (19)
Sc—O22.1220 (16)P2—O1iv1.5278 (16)
Sc—O42.1506 (18)P2—O2v1.5332 (16)
P1—O61.5088 (17)P2—O51.6151 (17)
P1vi—O5—P2125.47 (10)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The work was supported by grant MK00009486201.

References

First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDowty, E. (2003). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFérid, M., Horchani-Naifer, K. & Trabelsi-Ayedi, M. (2004). Z. Kristallogr. 219, 353–354.  Google Scholar
First citationHamady, A. & Jouini, T. (1996). Acta Cryst. C52, 2949–2951.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHizhnyi, Yu., Gomenyuk, O., Nedilko, S., Oliynyk, A., Okhrimenko, B. & Bojko, V. (2007). Radiat. Meas. 42, 719–722.  Web of Science CrossRef CAS Google Scholar
First citationHizhnyi, Yu., Oliynyk, A., Gomenyuk, O., Nedilko, S., Nagornyi, P., Bojko, R. & Bojko, V. (2008). Opt. Mater. 30, 687–689.  Web of Science CrossRef CAS Google Scholar
First citationLeclaire, A., Benmoussa, A., Borel, M. M., Grandin, A. & Raveau, B. (1988). J. Solid State Chem. 77, 299–305.  CrossRef CAS Web of Science Google Scholar
First citationLi, M.-R., Liu, W., Chen, H.-H., Yang, X.-X., Wei, Z.-B., Cao, D.-H., Gu, M. & Zhao, J.-T. (2005). Eur. J. Inorg. Chem. pp. 4693–4696.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79–i83.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVitins, G., Kanepe, Z., Vitins, A., Ronis, J., Dindune, A. & Lusis, A. (2000). J. Solid State Electrochem. 4, 146–152.  CAS Google Scholar
First citationYuan, J.-L., Zhang, H., Chen, H.-H., Yang, X.-X., Zhao, J.-T. & Gu, M. (2007). J. Solid State Chem. 180, 3381–3387.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds