organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o236-o237

(E)-3-Hydr­­oxy-N′-(2-hy­droxy­benzyl­­idene)-2-naphthohydrazide

aDepartment of Chemistry, Zanjan University 45195-313, Zanjan, Islamic Republic of Iran, and bDepartment of Chemistry and Biochemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: monfared@znu.ac.ir

(Received 3 November 2009; accepted 14 December 2009; online 24 December 2009)

The title compound, C18H14N2O3, is an aroylhydrazone with an approximately planar structure [dihedral angle of 15.27 (13)° between the benzene ring and the naphthyl ring system], stabilized by intra­molecular N—H⋯O and O—H⋯N hydrogen bonds. Inter­molecular O—H⋯O hydrogen bonds with the keto group as acceptor lead to strands along [100]. In terms of graph-set analysis, the descriptor on the unitary level is C11(6)S(6)S(6).

Related literature

For historical background to aroylhydrazones, see: Savanini et al. (2002[Savanini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193-2198.]); Craliz et al. (1955[Craliz, J. C., Rub, J. C., Willis, D. & Edger, J. (1955). Nature (London), 34, 176.]); Pickart et al. (1983[Pickart, L., Goodwin, W. H., Burgua, W., Murphy, T. B. & Johnson, D. K. (1983). Biochem. Pharmacol. 32, 3868-3871.]); Offe et al. (1952[Offe, H. A., Siefken, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 462-468.]); Arapov et al. (1987[Arapov, O. V., Alferva, O. F., Levocheskaya, E. I. & Krasil'nikov, I. (1987). Radiobiologiya, 27, 843-846.]); Ranford et al. (1998[Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226-1231.]). For related structures, see: Liu et al. (2004[Liu, W.-Y. & Li, Y.-Z. (2004). Acta Cryst. E60, o694-o695.]); Lei et al. (2008[Lei, J.-T., Jiang, Y.-X., Tao, L.-Y., Huang, S.-S. & Zhang, H.-L. (2008). Acta Cryst. E64, o909.]). For graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O3

  • Mr = 306.32

  • Orthorhombic, P n a 21

  • a = 12.6749 (4) Å

  • b = 4.9666 (1) Å

  • c = 22.7299 (6) Å

  • V = 1430.87 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.50 × 0.10 × 0.09 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 10328 measured reflections

  • 1676 independent reflections

  • 1416 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 1.09

  • 1676 reflections

  • 220 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.96 (5) 1.87 (5) 2.697 (3) 142 (4)
O3—H3⋯O1i 0.84 (4) 1.81 (4) 2.609 (2) 157 (3)
N1—H1⋯O3 0.92 (3) 1.85 (3) 2.628 (3) 141 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our studies on the synthesis and characterization of aroylhydrazone derivatives, we report on the crystal structure of (E)-3-hydroxy-N'-(2-hydroxybenzylidene)-2-naphthohydrazide.

The asymmetric unit contains one molecule of the title compound, which is shown in Figure 1. The molecule is almost planar with a dihedral angle of 15.27 (13)° between the benzene ring and the naphthyl ring. This configuration is stabilized by two intramolecular hydrogen bonds of the types O–H···N and N–H···O. The keto group acts as an acceptor in a hydrogen bond of the type O–H···O leading to infinite chains along [100] (Fig. 2). In terms of graph-set analysis [Bernstein et al. (1995), Etter et al. (1990)], the descriptor on the unitary level is C11(6)S(6)S(6).

The arrangement of the molecules within the chains along [100] formed by hydrogen bonds becomes evident when viewing along the chain axis (Fig. 3). The chains are constituted by the glide planes perpendicular to the b-axis with the glide vectors along [100]. Since the title compound is not oriented parallel or perpendicular to the glide plane, the hydrogen-bond linked molecules do not form layers as one might think when seeing Fig. 2. The repeating unit of the chain consists of two molecules which are oriented approximately perpendicular to each other. The least-square planes (determined by all non-hydrogen atoms of a molecule) of adjacent molecules enclose an angle of 86.33 (1)°.

The same hydrogen bonds as described above are present in the structure of an ethoxy derivative of the title compound [Lei et al. (2008)], however, slightly undulated layers are formed. Stronger undulation of the layers is observed in the structure of a methyl derivative of the title compound [Liu et al. (2004)], in which the keto group is not involved as acceptor in the intramolecular hydrogen bond, but the hydroxyl group bound to the phenyl ring.

Related literature top

For historical background to aroylhydrazones, see: Savanini et al. (2002); Craliz et al. (1955); Pickart et al. (1983); Offe et al. (1952); Arapov et al. (1987); Ranford et al. (1998). For related structures, see: Liu et al. (2004); Lei et al. (2008). For graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

All reagents were commercially available and used as received. A methanol (10 ml) solution of 2-hydroxybenzaldehyde (1.63 mmol) was drop-wise added to a methanol solution (10 ml) of 3-hydroxy-2-naphthohydrazide (1.63 mmol), and the mixture was refluxed for 3 h. Then the solution was evaporated on a steam bath to 5 cm3 and cooled to room temperature. Yellow precipitates of the title compound were separated and filtered off, washed with 5 ml of cooled methanol and then dried in air. X-ray quality crystals of the title compound were obtained from methanol by slow solvent evaporation. Yield: 75%, mp 317 °C.

Refinement top

O– and N-bound H atoms were refined freely. C-bonded H atoms were positioned geometrically (C—H = 0.95 Å) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C)].

1550 Friedel pairs have been merged. The Flack parameter is meaningless.

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. Hydrogen bonding in the title compound viewed along [0 - 1 0]. The green and red dashed arrows indicate intramolecular N–H···O and O–H···N hydrogen bonds, respectively. The blue dashed arrows indicate intermolecular O–H···O hydrogen bonds leading to strands along [100].
[Figure 3] Fig. 3. Projection of the hydrogen-bond linked chains viewed along [100]. For clarity only the two chains with their axis located within the unit cell are shown. Dashed lines indicate the a glide planes perpendicular to the b-axis.
(E)-3-Hydroxy-N'-(2-hydroxybenzylidene)-2-naphthohydrazide top
Crystal data top
C18H14N2O3F(000) = 640
Mr = 306.32Dx = 1.422 (1) Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5508 reflections
a = 12.6749 (4) Åθ = 3.1–27.5°
b = 4.9666 (1) ŵ = 0.10 mm1
c = 22.7299 (6) ÅT = 200 K
V = 1430.87 (7) Å3Rod, yellow
Z = 40.50 × 0.10 × 0.09 mm
Data collection top
Nonius KappaCCD
diffractometer
1416 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.054
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.4°, θmin = 3.3°
Detector resolution: 9 pixels mm-1h = 1616
CCD; rotation images; thick slices, phi/ω–scank = 66
10328 measured reflectionsl = 2929
1676 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.052P)2 + 0.1709P]
where P = (Fo2 + 2Fc2)/3
1676 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C18H14N2O3V = 1430.87 (7) Å3
Mr = 306.32Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.6749 (4) ŵ = 0.10 mm1
b = 4.9666 (1) ÅT = 200 K
c = 22.7299 (6) Å0.50 × 0.10 × 0.09 mm
Data collection top
Nonius KappaCCD
diffractometer
1416 reflections with I > 2σ(I)
10328 measured reflectionsRint = 0.054
1676 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.16 e Å3
1676 reflectionsΔρmin = 0.17 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23226 (13)0.2694 (4)0.22862 (9)0.0383 (4)
O20.31563 (16)0.3045 (5)0.09755 (11)0.0533 (6)
H20.280 (4)0.182 (9)0.124 (2)0.092 (14)*
O30.08649 (14)0.4024 (3)0.18929 (8)0.0325 (4)
H30.151 (3)0.377 (6)0.1953 (15)0.044 (8)*
N10.09013 (15)0.1311 (4)0.17680 (9)0.0283 (4)
H10.019 (2)0.157 (5)0.1723 (13)0.037 (7)*
N20.14658 (15)0.0532 (4)0.14425 (8)0.0290 (4)
C10.13752 (17)0.2878 (5)0.21681 (10)0.0258 (5)
C20.06987 (17)0.4915 (5)0.24682 (10)0.0250 (5)
C30.03790 (17)0.5489 (5)0.23284 (10)0.0255 (5)
C40.09057 (18)0.7497 (5)0.26178 (11)0.0283 (5)
H40.16120.78970.25090.034*
C50.04258 (17)0.8986 (5)0.30734 (10)0.0272 (5)
C60.0956 (2)1.1070 (5)0.33832 (11)0.0332 (6)
H60.16601.15240.32800.040*
C70.0461 (2)1.2432 (5)0.38286 (11)0.0353 (6)
H70.08281.38070.40350.042*
C80.0589 (2)1.1808 (6)0.39843 (12)0.0380 (6)
H80.09251.27610.42940.046*
C90.1119 (2)0.9845 (5)0.36906 (11)0.0344 (6)
H90.18270.94430.37970.041*
C100.06327 (18)0.8391 (5)0.32300 (10)0.0279 (5)
C110.11661 (18)0.6368 (5)0.29118 (11)0.0282 (5)
H110.18800.59940.30080.034*
C120.0899 (2)0.1961 (5)0.10947 (11)0.0301 (5)
H120.01560.16970.10930.036*
C130.1346 (2)0.3955 (5)0.07051 (10)0.0310 (5)
C140.2435 (2)0.4434 (6)0.06574 (12)0.0372 (6)
C150.2796 (2)0.6364 (7)0.02599 (16)0.0501 (7)
H150.35320.66560.02160.060*
C160.2097 (3)0.7845 (6)0.00686 (14)0.0488 (8)
H160.23560.91870.03290.059*
C170.1027 (3)0.7416 (5)0.00265 (13)0.0450 (7)
H170.05480.84290.02590.054*
C180.0665 (2)0.5492 (5)0.03591 (11)0.0388 (6)
H180.00730.52010.03910.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0226 (8)0.0433 (10)0.0489 (10)0.0037 (7)0.0027 (8)0.0084 (9)
O20.0286 (10)0.0615 (14)0.0697 (15)0.0054 (9)0.0018 (10)0.0210 (12)
O30.0207 (8)0.0394 (10)0.0373 (10)0.0008 (7)0.0018 (7)0.0050 (8)
N10.0209 (9)0.0316 (10)0.0324 (10)0.0024 (8)0.0015 (8)0.0025 (8)
N20.0265 (9)0.0297 (10)0.0309 (10)0.0024 (8)0.0038 (8)0.0004 (8)
C10.0216 (10)0.0267 (11)0.0290 (12)0.0000 (9)0.0025 (9)0.0035 (10)
C20.0218 (11)0.0243 (12)0.0288 (11)0.0016 (9)0.0026 (9)0.0038 (9)
C30.0228 (11)0.0268 (11)0.0270 (11)0.0034 (9)0.0004 (9)0.0021 (10)
C40.0213 (10)0.0295 (12)0.0340 (12)0.0016 (9)0.0003 (9)0.0056 (10)
C50.0266 (11)0.0260 (12)0.0292 (11)0.0020 (9)0.0012 (9)0.0044 (9)
C60.0321 (12)0.0314 (13)0.0362 (14)0.0010 (10)0.0045 (10)0.0029 (11)
C70.0439 (14)0.0290 (13)0.0330 (13)0.0009 (11)0.0056 (11)0.0026 (11)
C80.0447 (15)0.0367 (14)0.0326 (13)0.0053 (12)0.0032 (12)0.0016 (11)
C90.0341 (12)0.0335 (13)0.0357 (13)0.0029 (10)0.0065 (11)0.0020 (11)
C100.0289 (12)0.0263 (12)0.0285 (12)0.0030 (10)0.0008 (10)0.0036 (10)
C110.0238 (11)0.0293 (12)0.0315 (12)0.0007 (9)0.0016 (9)0.0023 (10)
C120.0270 (11)0.0311 (13)0.0320 (11)0.0009 (10)0.0028 (10)0.0020 (11)
C130.0338 (12)0.0287 (13)0.0305 (13)0.0016 (9)0.0028 (10)0.0023 (10)
C140.0335 (12)0.0361 (15)0.0419 (14)0.0007 (10)0.0018 (11)0.0029 (12)
C150.0440 (16)0.0484 (17)0.0577 (17)0.0120 (13)0.0099 (15)0.0050 (15)
C160.072 (2)0.0361 (15)0.0389 (15)0.0052 (14)0.0104 (14)0.0061 (13)
C170.062 (2)0.0370 (15)0.0365 (15)0.0039 (14)0.0021 (13)0.0023 (13)
C180.0411 (14)0.0380 (15)0.0372 (13)0.0031 (11)0.0018 (12)0.0019 (12)
Geometric parameters (Å, º) top
O1—C11.234 (3)C7—H70.9500
O2—C141.354 (3)C8—C91.360 (4)
O2—H20.96 (5)C8—H80.9500
O3—C31.374 (3)C9—C101.413 (3)
O3—H30.84 (4)C9—H90.9500
N1—C11.339 (3)C10—C111.411 (3)
N1—N21.378 (3)C11—H110.9500
N1—H10.92 (3)C12—C131.444 (3)
N2—C121.283 (3)C12—H120.9500
C1—C21.491 (3)C13—C181.395 (3)
C2—C111.374 (3)C13—C141.405 (3)
C2—C31.431 (3)C14—C151.394 (4)
C3—C41.368 (3)C15—C161.372 (5)
C4—C51.410 (3)C15—H150.9500
C4—H40.9500C16—C171.377 (5)
C5—C101.419 (3)C16—H160.9500
C5—C61.421 (3)C17—C181.375 (4)
C6—C71.369 (4)C17—H170.9500
C6—H60.9500C18—H180.9500
C7—C81.411 (4)
C14—O2—H2110 (3)C8—C9—C10121.0 (2)
C3—O3—H3114 (2)C8—C9—H9119.5
C1—N1—N2121.20 (19)C10—C9—H9119.5
C1—N1—H1115.9 (18)C11—C10—C9122.3 (2)
N2—N1—H1122.9 (18)C11—C10—C5118.2 (2)
C12—N2—N1114.05 (19)C9—C10—C5119.5 (2)
O1—C1—N1122.8 (2)C2—C11—C10122.9 (2)
O1—C1—C2120.7 (2)C2—C11—H11118.5
N1—C1—C2116.55 (19)C10—C11—H11118.5
C11—C2—C3118.0 (2)N2—C12—C13122.5 (2)
C11—C2—C1116.35 (19)N2—C12—H12118.8
C3—C2—C1125.6 (2)C13—C12—H12118.8
C4—C3—O3120.88 (19)C18—C13—C14118.1 (2)
C4—C3—C2120.3 (2)C18—C13—C12118.6 (2)
O3—C3—C2118.84 (19)C14—C13—C12123.3 (2)
C3—C4—C5121.6 (2)O2—C14—C15118.4 (2)
C3—C4—H4119.2O2—C14—C13122.4 (2)
C5—C4—H4119.2C15—C14—C13119.2 (3)
C4—C5—C10118.9 (2)C16—C15—C14120.7 (3)
C4—C5—C6122.8 (2)C16—C15—H15119.7
C10—C5—C6118.3 (2)C14—C15—H15119.7
C7—C6—C5120.7 (2)C15—C16—C17121.0 (3)
C7—C6—H6119.7C15—C16—H16119.5
C5—C6—H6119.7C17—C16—H16119.5
C6—C7—C8120.6 (2)C18—C17—C16118.7 (3)
C6—C7—H7119.7C18—C17—H17120.6
C8—C7—H7119.7C16—C17—H17120.6
C9—C8—C7120.0 (2)C17—C18—C13122.2 (3)
C9—C8—H8120.0C17—C18—H18118.9
C7—C8—H8120.0C13—C18—H18118.9
C1—N1—N2—C12177.3 (2)C4—C5—C10—C111.4 (3)
N2—N1—C1—O13.1 (3)C6—C5—C10—C11178.4 (2)
N2—N1—C1—C2176.38 (18)C4—C5—C10—C9179.2 (2)
O1—C1—C2—C115.6 (3)C6—C5—C10—C91.0 (3)
N1—C1—C2—C11174.9 (2)C3—C2—C11—C100.3 (3)
O1—C1—C2—C3173.6 (2)C1—C2—C11—C10179.0 (2)
N1—C1—C2—C35.9 (3)C9—C10—C11—C2179.1 (2)
C11—C2—C3—C42.3 (3)C5—C10—C11—C21.5 (3)
C1—C2—C3—C4177.0 (2)N1—N2—C12—C13178.3 (2)
C11—C2—C3—O3178.9 (2)N2—C12—C13—C18177.4 (2)
C1—C2—C3—O31.8 (3)N2—C12—C13—C142.4 (4)
O3—C3—C4—C5178.8 (2)C18—C13—C14—O2179.9 (3)
C2—C3—C4—C52.4 (4)C12—C13—C14—O20.1 (4)
C3—C4—C5—C100.5 (3)C18—C13—C14—C151.5 (4)
C3—C4—C5—C6179.7 (2)C12—C13—C14—C15178.7 (3)
C4—C5—C6—C7179.0 (2)O2—C14—C15—C16179.3 (3)
C10—C5—C6—C71.2 (3)C13—C14—C15—C162.1 (5)
C5—C6—C7—C80.7 (4)C14—C15—C16—C171.8 (5)
C6—C7—C8—C90.1 (4)C15—C16—C17—C180.9 (4)
C7—C8—C9—C100.3 (4)C16—C17—C18—C130.4 (4)
C8—C9—C10—C11179.1 (2)C14—C13—C18—C170.7 (4)
C8—C9—C10—C50.2 (4)C12—C13—C18—C17179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.96 (5)1.87 (5)2.697 (3)142 (4)
O3—H3···O1i0.84 (4)1.81 (4)2.609 (2)157 (3)
N1—H1···O30.92 (3)1.85 (3)2.628 (3)141 (2)
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC18H14N2O3
Mr306.32
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)200
a, b, c (Å)12.6749 (4), 4.9666 (1), 22.7299 (6)
V3)1430.87 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.10 × 0.09
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10328, 1676, 1416
Rint0.054
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.09
No. of reflections1676
No. of parameters220
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: COLLECT (Hooft, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.96 (5)1.87 (5)2.697 (3)142 (4)
O3—H3···O1i0.84 (4)1.81 (4)2.609 (2)157 (3)
N1—H1···O30.92 (3)1.85 (3)2.628 (3)141 (2)
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to Zanjan University, the Faculty of Chemistry and Biochemistry of the LMU Munich, and the School of Chemistry for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArapov, O. V., Alferva, O. F., Levocheskaya, E. I. & Krasil'nikov, I. (1987). Radiobiologiya, 27, 843–846.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCraliz, J. C., Rub, J. C., Willis, D. & Edger, J. (1955). Nature (London), 34, 176.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLei, J.-T., Jiang, Y.-X., Tao, L.-Y., Huang, S.-S. & Zhang, H.-L. (2008). Acta Cryst. E64, o909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, W.-Y. & Li, Y.-Z. (2004). Acta Cryst. E60, o694–o695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOffe, H. A., Siefken, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 462–468.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPickart, L., Goodwin, W. H., Burgua, W., Murphy, T. B. & Johnson, D. K. (1983). Biochem. Pharmacol. 32, 3868–3871.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRanford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSavanini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193–2198.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o236-o237
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds