organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Bis(4-eth­oxy­phen­yl)quinoxaline

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: duzq@zju.edu.cn

(Received 12 November 2009; accepted 5 December 2009; online 12 December 2009)

The title compound, C24H22N2O2, was prepared by condensation of 1,2-bis­(4-ethoxy­phen­yl)ethane-1,2-dione and 1,2-diamino­benzene. The asymmetric unit contains one half-mol­ecule, close to a twofold axis. The plane of the quinoxaline ring is twisted with respect to the planes of the two ethoxy­phenyl ring systems, exhibiting dihedral angles of 39.95 (9)°. The crystal packing is dominated by weak C—H⋯π inter­actions. No classical hydrogen bonds or stacking inter­actions are observed.

Related literature

For applications of quinoxaline derivatives, see: Seitz et al. (2002[Seitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604-5606.]); He et al. (2003[He, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097-3100.]); Dailey et al. (2001[Dailey, S., Feast, W. J., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001). J. Mater. Chem. 11, 2238-2243.]). For the syntheses of quinoxaline derivatives, see: Bhosale et al. (2005[Bhosale, R. S., Sarda, S. R., Ardhapure, S. S., Jadhav, W. N., Bhusare, S. R. & Pawar, R. P. (2005). Tetrahedron Lett. 46, 7183-7186.]); More et al. (2006[More, S. V., Sastry, M. N. V. & Yao, C.-F. (2006). Green Chem. 8, 91-95.]); Raw et al. (2003[Raw, S. A., Wilfred, C. D. & Taylor, R. J. K. (2003). Chem. Commun. pp. 2286-2287.]). For the synthesis of the title compound, see: Heravi et al. (2006[Heravi, M. M., Taheri, S., Bakhtiari, K. & Oskooie, H. A. (2006). Catal. Commun. 8, 211-214.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22N2O2

  • Mr = 370.44

  • Monoclinic, C 2/c

  • a = 19.4837 (18) Å

  • b = 11.2682 (11) Å

  • c = 9.2629 (9) Å

  • β = 100.196 (1)°

  • V = 2001.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.37 × 0.27 × 0.24 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.981

  • 6487 measured reflections

  • 1743 independent reflections

  • 1560 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.03

  • 1743 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg1i 0.93 2.85 3.3936 (17) 119
C11—H11ACg2ii 0.96 2.93 3.743 (2) 143
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]. Cg1 is the centroid of the N1,C1,C1′,N1′,C2 ring and Cg2 is the centroid of the C5–C10 ring.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Quinoxaline derivatives are an important class of benzoheterocycles. They have found applications as anticancer, antiviral, and antibacterial agents (Seitz et al., 2002; He et al., 2003), and dyes (Dailey et al., 2001). In recent years, many synthesis of quinoxaline derivatives have been reported (Raw et al., 2003; Bhosale et al., 2005; More et al., 2006). The title compound is one of such quinoxaline derivatives. We have synthesized the title compound and report now its crystal structure.

The molecular structure of title compound is as shown in Fig. 1. The molecule lies on a twofold axis. The quinoxaline ring and two ethoxyphenyl rings are independent and planar. The quinoxaline ring is twisted with respect to the ethoxyphenyl ring with a dihedral angle of 39.95 (9)°. Packing is dominated by rather weak C—H···π interactions (Table 1). In contrast, no significant hydrogen bonds or stacking interactions are observed in the crystal structure.

Related literature top

For applications of quinoxaline derivatives, see: Seitz et al. (2002); He et al. (2003); Dailey et al. (2001). For the syntheses of quinoxaline derivatives, see:

Bhosale et al. (2005); More et al. (2006); Raw et al. (2003). For the synthesis of the title compound, see: Heravi et al. (2006).

Experimental top

The title compound was prepared according to the procedure reported by Heravi et al. (2006). A mixture of 1,2-bis(4-ethoxyphenyl)ethane-1,2-dione (1 mmol), 1,2-diaminobenzene (1 mmol), and ammonium fluoride (10% mol) in CH3OH (5 ml) was stirred at room temperature. The progress of the reaction was monitored by TLC. After completion, CH2Cl2 was added to the reaction mixture. The product dissolves in CH2Cl2 and the catalyst separated easily from the mixture by filtration. Solvents evaporation afforded the crude product. The solid was recrystallized from ethanol. Single crystals suitable for X-ray data collection were obtained by recrystallization from a dichloromethane-methanol mixture.

Refinement top

All H atoms were located geometrically and treated as riding, with C—H distances in the range 0.93–0.97 Å and Uiso(H)=1.2Ueq(parent atom) or Uiso(H)=1.5Ueq(parent atom) in the case of the methyl group.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with 40% probability displacement ellipsoids. Atoms labeled with _2 are generated by symmetry 1 - x, y, 1/2 - z.
2,3-Bis(4-ethoxyphenyl)quinoxaline top
Crystal data top
C24H22N2O2F(000) = 784
Mr = 370.44Dx = 1.229 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3608 reflections
a = 19.4837 (18) Åθ = 5.6–52.7°
b = 11.2682 (11) ŵ = 0.08 mm1
c = 9.2629 (9) ÅT = 293 K
β = 100.196 (1)°Prism, yellow
V = 2001.5 (3) Å30.37 × 0.27 × 0.24 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1743 independent reflections
Radiation source: fine-focus sealed tube1560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2322
Tmin = 0.972, Tmax = 0.981k = 1213
6487 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.9006P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1743 reflectionsΔρmax = 0.17 e Å3
128 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0289 (19)
Crystal data top
C24H22N2O2V = 2001.5 (3) Å3
Mr = 370.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.4837 (18) ŵ = 0.08 mm1
b = 11.2682 (11) ÅT = 293 K
c = 9.2629 (9) Å0.37 × 0.27 × 0.24 mm
β = 100.196 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1743 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1560 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.981Rint = 0.028
6487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
1743 reflectionsΔρmin = 0.12 e Å3
128 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.46773 (6)0.00154 (10)0.19704 (12)0.0281 (3)
N10.43983 (5)0.10164 (8)0.14060 (11)0.0321 (3)
C20.47078 (6)0.20565 (10)0.19257 (13)0.0333 (3)
C30.44262 (8)0.31482 (11)0.13548 (16)0.0459 (4)
H30.40440.31570.05940.055*
C40.47143 (9)0.41910 (12)0.19182 (17)0.0580 (4)
H40.45310.49080.15290.070*
O10.31520 (5)0.41927 (8)0.03771 (11)0.0503 (3)
C80.35080 (6)0.31489 (10)0.06662 (14)0.0369 (3)
C60.41928 (6)0.19601 (11)0.25439 (13)0.0365 (3)
H60.43950.18560.35230.044*
C100.39626 (6)0.12701 (10)0.00690 (13)0.0334 (3)
H100.40030.06900.06250.040*
C50.42812 (6)0.10907 (10)0.15155 (12)0.0294 (3)
C70.38108 (7)0.29661 (11)0.21256 (14)0.0402 (3)
H70.37540.35320.28260.048*
C90.35851 (6)0.22927 (11)0.03675 (14)0.0368 (3)
H90.33850.24030.13470.044*
C110.28097 (7)0.44243 (12)0.10928 (17)0.0514 (4)
H11A0.24760.38010.14280.062*
H11B0.31480.44550.17450.062*
C120.24435 (8)0.55950 (14)0.1089 (2)0.0689 (5)
H12A0.22090.57770.20650.103*
H12B0.27780.62040.07550.103*
H12C0.21090.55520.04450.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0309 (6)0.0289 (6)0.0251 (6)0.0019 (5)0.0067 (5)0.0001 (4)
N10.0342 (5)0.0298 (6)0.0320 (6)0.0025 (4)0.0051 (4)0.0004 (4)
C20.0394 (6)0.0289 (6)0.0328 (7)0.0020 (5)0.0096 (5)0.0004 (5)
C30.0582 (8)0.0346 (7)0.0437 (8)0.0107 (6)0.0053 (6)0.0041 (6)
C40.0851 (12)0.0279 (7)0.0607 (10)0.0092 (7)0.0119 (8)0.0052 (6)
O10.0515 (6)0.0377 (5)0.0575 (6)0.0140 (4)0.0017 (5)0.0093 (4)
C80.0338 (6)0.0303 (7)0.0451 (8)0.0029 (5)0.0032 (5)0.0078 (5)
C60.0426 (7)0.0371 (7)0.0286 (6)0.0073 (5)0.0030 (5)0.0014 (5)
C100.0343 (6)0.0331 (7)0.0320 (7)0.0020 (5)0.0037 (5)0.0010 (5)
C50.0285 (5)0.0290 (6)0.0307 (6)0.0010 (5)0.0048 (4)0.0015 (5)
C70.0472 (7)0.0345 (7)0.0383 (7)0.0093 (6)0.0061 (6)0.0027 (5)
C90.0365 (6)0.0385 (7)0.0327 (7)0.0014 (5)0.0015 (5)0.0065 (5)
C110.0398 (7)0.0482 (8)0.0622 (10)0.0006 (6)0.0024 (6)0.0242 (7)
C120.0434 (8)0.0553 (10)0.1049 (14)0.0103 (7)0.0049 (8)0.0361 (9)
Geometric parameters (Å, º) top
C1—N11.3193 (14)C6—C71.3737 (17)
C1—C1i1.452 (2)C6—C51.3981 (16)
C1—C51.4871 (15)C6—H60.9300
N1—C21.3660 (15)C10—C91.3881 (17)
C2—C31.4111 (17)C10—C51.3882 (16)
C2—C2i1.414 (2)C10—H100.9300
C3—C41.3655 (19)C7—H70.9300
C3—H30.9300C9—H90.9300
C4—C4i1.406 (3)C11—C121.500 (2)
C4—H40.9300C11—H11A0.9700
O1—C81.3676 (14)C11—H11B0.9700
O1—C111.4301 (17)C12—H12A0.9600
C8—C91.3860 (18)C12—H12B0.9600
C8—C71.3912 (18)C12—H12C0.9600
N1—C1—C1i120.98 (6)C5—C10—H10119.2
N1—C1—C5116.59 (10)C10—C5—C6117.88 (11)
C1i—C1—C5122.38 (6)C10—C5—C1121.10 (10)
C1—N1—C2117.95 (10)C6—C5—C1120.97 (10)
N1—C2—C3119.85 (11)C6—C7—C8120.77 (11)
N1—C2—C2i120.77 (6)C6—C7—H7119.6
C3—C2—C2i119.33 (8)C8—C7—H7119.6
C4—C3—C2120.05 (13)C8—C9—C10119.56 (11)
C4—C3—H3120.0C8—C9—H9120.2
C2—C3—H3120.0C10—C9—H9120.2
C3—C4—C4i120.61 (8)O1—C11—C12107.47 (14)
C3—C4—H4119.7O1—C11—H11A110.2
C4i—C4—H4119.7C12—C11—H11A110.2
C8—O1—C11118.57 (11)O1—C11—H11B110.2
O1—C8—C9125.21 (11)C12—C11—H11B110.2
O1—C8—C7115.51 (11)H11A—C11—H11B108.5
C9—C8—C7119.28 (11)C11—C12—H12A109.5
C7—C6—C5120.80 (11)C11—C12—H12B109.5
C7—C6—H6119.6H12A—C12—H12B109.5
C5—C6—H6119.6C11—C12—H12C109.5
C9—C10—C5121.69 (11)H12A—C12—H12C109.5
C9—C10—H10119.2H12B—C12—H12C109.5
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C1,C1',N1',C2 ring and Cg2 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1ii0.932.853.3936 (17)119
C11—H11A···Cg2iii0.962.933.743 (2)143
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC24H22N2O2
Mr370.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.4837 (18), 11.2682 (11), 9.2629 (9)
β (°) 100.196 (1)
V3)2001.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.27 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
6487, 1743, 1560
Rint0.028
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.03
No. of reflections1743
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.12

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C1,C1',N1',C2 ring and Cg2 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.932.853.3936 (17)119
C11—H11A···Cg2ii0.962.933.743 (2)143
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20376071).

References

First citationBhosale, R. S., Sarda, S. R., Ardhapure, S. S., Jadhav, W. N., Bhusare, S. R. & Pawar, R. P. (2005). Tetrahedron Lett. 46, 7183–7186.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDailey, S., Feast, W. J., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001). J. Mater. Chem. 11, 2238–2243.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHe, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHeravi, M. M., Taheri, S., Bakhtiari, K. & Oskooie, H. A. (2006). Catal. Commun. 8, 211–214.  Web of Science CrossRef Google Scholar
First citationMore, S. V., Sastry, M. N. V. & Yao, C.-F. (2006). Green Chem. 8, 91–95.  Web of Science CrossRef CAS Google Scholar
First citationRaw, S. A., Wilfred, C. D. & Taylor, R. J. K. (2003). Chem. Commun. pp. 2286–2287.  Web of Science CrossRef Google Scholar
First citationSeitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604–5606.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds