metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-methoxido-μ-oxido-bis­­[tri­phenyl­antimony(V)] methanol disolvate

aLudwig-Maximilians Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 23 October 2009; accepted 4 December 2009; online 9 December 2009)

The title compound, [Sb2(C6H5)6(CH3O)2O]·2CH3OH, is the methanol disolvate of a dinuclear triphenyl­anti­mony derivative. The mol­ecule shows Cs symmetry. The Sb—O—Sb angles cover a range from 89.65 (10)° to 102.08 (13)°. In the crystal structure, two O—H⋯O hydrogen bonds are present.

Related literature

For related structures, see: Bordner et al. (1986[Bordner, J., Doak, G. O. & Everett, T. S. (1986). J. Am. Chem. Soc. 108, 4206-4213.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For the synthesis of triphenyl­stibane oxide, see: Goodgame & Cotton (1960[Goodgame, D. M. L. & Cotton, F. A. (1960). J. Am. Chem. Soc. 82, 5774-5776.]).

[Scheme 1]

Experimental

Crystal data
  • [Sb2(C6H5)6(CH3O)2O]·2CH4O

  • Mr = 848.25

  • Orthorhombic, P n m a

  • a = 10.7666 (3) Å

  • b = 20.9205 (5) Å

  • c = 16.5619 (5) Å

  • V = 3730.45 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 200 K

  • 0.21 × 0.13 × 0.11 mm

Data collection
  • Oxford Xcalibur KappaCCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]) Tmin = 0.923, Tmax = 1.000

  • 15055 measured reflections

  • 3877 independent reflections

  • 2632 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.069

  • S = 1.07

  • 3877 reflections

  • 250 parameters

  • 35 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.16 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O90—H90C⋯O1 0.83 (2) 1.90 (3) 2.718 (5) 168 (7)
O91—H91C⋯O90 0.84 (2) 1.81 (2) 2.642 (7) 180 (15)

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-III (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In a program focused on the synthesis of carbohydrate-derived chelates of members of the p-block of the periodic table of elements, efforts were made to synthesize a diol compound derived from Sb(V). Unintendedly, a dinuclear triphenylantimony derivative was isolated.

In the Cs symmetric molecule, two antimony atoms bearing three phenyl moieties each are connected by two methoxido ligands and one oxido ligand (Fig. 1). The Sb–O–Sb angles cover a range from 90° to 102° with the largest angle on the oxido bridge.

In the crystal structure, two methanol molecules are present which form finite hydrogen bonds (Fig. 2). On the unitary level of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) the descriptor of this pattern is DD.

Related literature top

For related structures, see Bordner et al. (1986). For graph-set analysis, see Bernstein et al. (1995); Etter et al. (1990). For the synthesis of triphenylstibane oxide, see: Goodgame & Cotton (1960).

Experimental top

The compound was unintendedly prepared upon the attempted condensation of triphenylstibane oxide with a polyol in an aprotic solvent. 1 eq. of triphenylstibane oxide (prepared according to Goodgame & Cotton, 1960) was stirred with 1 eq. of xylitol in dioxane until a clear solution was obtained. After removal of the solvent and subsequent recrystallization from methanol crystals were obtained.

Refinement top

H atoms bonded to aromatic C atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). H atoms bonded to methyl groups and hydroxyl groups were refined freely with fixed distances using DFIX instructions (C—H 0.96 (2) Å; O—H 0.83 (2) Å). For the refinement their U(H) was set to 1.5Ueq(C) and 1.5Ueq(O), respectively. The C and O atoms of the free methanol molecules were refined so that their Uij components approximate to isotropic behaviour.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-III (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms. Symmetry code: i x, -y + 1/2, z.
[Figure 2] Fig. 2. Hydrogen bonds in the crystal structure of the title compound, viewed along [0 1 0]. Symmetry codes: i x + 1/2, y, -z + 1/2; ii x - 1/2, y, -z + 1/2.
Di-µ-methoxido-µ-oxido-bis[triphenylantimony(V)] methanol disolvate top
Crystal data top
[Sb2(C6H5)6(CH3O)2O]·2CH4OF(000) = 1704
Mr = 848.25Dx = 1.510 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 6848 reflections
a = 10.7666 (3) Åθ = 3.8–26.3°
b = 20.9205 (5) ŵ = 1.49 mm1
c = 16.5619 (5) ÅT = 200 K
V = 3730.45 (18) Å3Rod, colourless
Z = 40.21 × 0.13 × 0.11 mm
Data collection top
Oxford Xcalibur KappaCCD
diffractometer
3877 independent reflections
Radiation source: fine-focus sealed tube2632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω–scansθmax = 26.3°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)
h = 1310
Tmin = 0.923, Tmax = 1.000k = 2526
15055 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0343P)2]
where P = (Fo2 + 2Fc2)/3
3877 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 1.16 e Å3
35 restraintsΔρmin = 0.91 e Å3
Crystal data top
[Sb2(C6H5)6(CH3O)2O]·2CH4OV = 3730.45 (18) Å3
Mr = 848.25Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 10.7666 (3) ŵ = 1.49 mm1
b = 20.9205 (5) ÅT = 200 K
c = 16.5619 (5) Å0.21 × 0.13 × 0.11 mm
Data collection top
Oxford Xcalibur KappaCCD
diffractometer
3877 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)
2632 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 1.000Rint = 0.035
15055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02535 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.16 e Å3
3877 reflectionsΔρmin = 0.91 e Å3
250 parameters
Special details top

Experimental. Absorption correction Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3088 (3)0.12147 (15)0.46497 (18)0.0318 (7)
C20.3241 (3)0.06249 (15)0.42762 (19)0.0351 (8)
H20.40480.04940.41120.042*
C30.2232 (3)0.02236 (17)0.4139 (2)0.0445 (9)
H30.23490.01780.38830.053*
C40.1068 (4)0.04132 (18)0.4375 (2)0.0535 (11)
H40.03740.01430.42810.064*
C50.0904 (4)0.0994 (2)0.4748 (2)0.0565 (11)
H50.00940.11210.49100.068*
C60.1907 (3)0.13995 (18)0.4893 (2)0.0448 (9)
H60.17840.17980.51560.054*
C70.5293 (3)0.13287 (13)0.59936 (18)0.0302 (7)
C80.4591 (3)0.08530 (16)0.6357 (2)0.0420 (9)
H80.38680.06960.60960.050*
C90.4943 (4)0.06062 (19)0.7100 (2)0.0543 (11)
H90.44570.02810.73460.065*
C100.5977 (5)0.08263 (18)0.7479 (2)0.0640 (13)
H100.61950.06640.79950.077*
C110.6706 (4)0.12803 (17)0.7119 (2)0.0580 (12)
H110.74450.14210.73770.070*
C120.6364 (4)0.15360 (16)0.6376 (2)0.0455 (10)
H120.68680.18540.61300.055*
C130.5940 (3)0.13122 (14)0.40116 (18)0.0289 (7)
C140.6844 (3)0.08906 (17)0.4273 (2)0.0450 (9)
H140.69130.07970.48320.054*
C150.7646 (4)0.06037 (19)0.3733 (2)0.0597 (11)
H150.82580.03120.39190.072*
C160.7554 (3)0.07419 (18)0.2925 (2)0.0521 (10)
H160.81210.05550.25550.063*
C170.6651 (4)0.11463 (16)0.2649 (2)0.0464 (9)
H170.65790.12320.20880.056*
C180.5844 (4)0.14299 (15)0.3193 (2)0.0402 (8)
H180.52140.17090.30000.048*
O10.5888 (3)0.25000.50194 (15)0.0258 (7)
O200.3612 (3)0.25000.54656 (17)0.0277 (7)
O210.4204 (3)0.25000.40014 (16)0.0264 (6)
Sb10.47467 (2)0.175954 (8)0.487384 (12)0.02407 (8)
C200.3345 (5)0.25000.6305 (3)0.0400 (13)
H20A0.407 (5)0.25000.660 (3)0.060*
H20B0.283 (3)0.2876 (16)0.645 (2)0.060*
C210.3109 (5)0.25000.3525 (3)0.0397 (12)
H21A0.237 (3)0.25000.385 (3)0.060*
H21B0.299 (3)0.2858 (12)0.3186 (18)0.060*
C900.8713 (6)0.25000.3896 (4)0.0681 (18)
O900.8368 (3)0.25000.4711 (3)0.0744 (13)
H90A0.960 (2)0.25000.385 (5)0.112*
H90B0.839 (4)0.2871 (16)0.363 (3)0.112*
H90C0.7602 (19)0.25000.473 (4)0.112*
C910.9684 (6)0.25000.6588 (5)0.100 (3)
O911.0052 (5)0.25000.5871 (4)0.176 (4)
H91A1.038 (3)0.25000.6941 (16)0.264*
H91B0.916 (3)0.2124 (5)0.665 (2)0.264*
H91C0.952 (10)0.25000.550 (6)0.264*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0364 (19)0.0323 (17)0.0268 (18)0.0047 (16)0.0006 (14)0.0040 (13)
C20.044 (2)0.0330 (17)0.0287 (18)0.0055 (17)0.0045 (16)0.0053 (14)
C30.061 (2)0.0344 (19)0.038 (2)0.014 (2)0.0098 (18)0.0050 (15)
C40.052 (3)0.060 (3)0.048 (2)0.031 (2)0.004 (2)0.0075 (19)
C50.035 (2)0.075 (3)0.059 (3)0.015 (2)0.007 (2)0.003 (2)
C60.039 (2)0.051 (2)0.045 (2)0.0101 (19)0.0073 (18)0.0066 (17)
C70.0411 (19)0.0259 (16)0.0236 (16)0.0067 (16)0.0000 (16)0.0009 (12)
C80.047 (2)0.0409 (19)0.038 (2)0.0017 (18)0.0001 (18)0.0110 (16)
C90.075 (3)0.044 (2)0.043 (2)0.006 (2)0.009 (2)0.0178 (18)
C100.114 (4)0.047 (2)0.030 (2)0.023 (3)0.009 (2)0.0055 (19)
C110.088 (3)0.042 (2)0.043 (2)0.005 (2)0.029 (2)0.0004 (18)
C120.068 (3)0.0330 (19)0.036 (2)0.0012 (19)0.0146 (19)0.0029 (15)
C130.0324 (18)0.0252 (16)0.0291 (17)0.0018 (14)0.0025 (15)0.0015 (13)
C140.054 (2)0.053 (2)0.0282 (19)0.016 (2)0.0059 (18)0.0065 (16)
C150.058 (3)0.071 (3)0.050 (3)0.033 (2)0.009 (2)0.016 (2)
C160.050 (2)0.059 (3)0.047 (2)0.013 (2)0.0143 (19)0.0154 (19)
C170.067 (3)0.040 (2)0.032 (2)0.001 (2)0.0106 (19)0.0052 (16)
C180.053 (2)0.0347 (19)0.033 (2)0.0088 (18)0.0024 (18)0.0016 (15)
O10.0259 (16)0.0229 (14)0.0284 (17)0.0000.0009 (13)0.000
O200.0316 (17)0.0268 (15)0.0246 (16)0.0000.0054 (14)0.000
O210.0302 (16)0.0277 (16)0.0213 (15)0.0000.0026 (13)0.000
Sb10.02763 (12)0.02247 (11)0.02209 (12)0.00063 (10)0.00017 (9)0.00018 (8)
C200.051 (3)0.037 (3)0.032 (3)0.0000.016 (2)0.000
C210.040 (3)0.042 (3)0.037 (3)0.0000.014 (2)0.000
C900.058 (4)0.089 (5)0.057 (4)0.0000.012 (4)0.000
O900.034 (2)0.140 (4)0.049 (3)0.0000.001 (2)0.000
C910.062 (5)0.182 (9)0.056 (5)0.0000.007 (4)0.000
O910.077 (4)0.385 (12)0.064 (4)0.0000.003 (3)0.000
Geometric parameters (Å, º) top
C1—C61.388 (5)C15—C161.372 (5)
C1—C21.390 (4)C15—H150.9500
C1—Sb12.151 (3)C16—C171.367 (5)
C2—C31.392 (4)C16—H160.9500
C2—H20.9500C17—C181.386 (4)
C3—C41.372 (5)C17—H170.9500
C3—H30.9500C18—H180.9500
C4—C51.375 (5)O1—Sb11.9921 (18)
C4—H40.9500O1—Sb1i1.9922 (18)
C5—C61.394 (5)O20—C201.420 (5)
C5—H50.9500O20—Sb12.203 (2)
C6—H60.9500O20—Sb1i2.203 (2)
C7—C121.386 (4)O21—C211.419 (5)
C7—C81.387 (4)O21—Sb1i2.1975 (19)
C7—Sb12.144 (3)O21—Sb12.1975 (19)
C8—C91.388 (5)Sb1—Sb1i3.0981 (4)
C8—H80.9500C20—H20A0.92 (6)
C9—C101.358 (5)C20—H20B0.99 (3)
C9—H90.9500C21—H21A0.956 (19)
C10—C111.368 (5)C21—H21B0.945 (17)
C10—H100.9500C90—O901.400 (8)
C11—C121.391 (5)C90—H90A0.96 (2)
C11—H110.9500C90—H90B0.959 (19)
C12—H120.9500O90—H90C0.83 (2)
C13—C181.382 (4)C91—O911.252 (9)
C13—C141.383 (4)C91—H91A0.95 (2)
C13—Sb12.137 (3)C91—H91B0.973 (18)
C14—C151.381 (5)O91—H91C0.84 (2)
C14—H140.9500
C6—C1—C2119.0 (3)C16—C17—C18119.6 (3)
C6—C1—Sb1124.2 (2)C16—C17—H17120.2
C2—C1—Sb1116.6 (2)C18—C17—H17120.2
C1—C2—C3121.0 (3)C13—C18—C17121.0 (3)
C1—C2—H2119.5C13—C18—H18119.5
C3—C2—H2119.5C17—C18—H18119.5
C4—C3—C2119.5 (3)Sb1—O1—Sb1i102.08 (13)
C4—C3—H3120.3C20—O20—Sb1123.25 (17)
C2—C3—H3120.3C20—O20—Sb1i123.25 (17)
C3—C4—C5120.1 (4)Sb1—O20—Sb1i89.38 (10)
C3—C4—H4120.0C21—O21—Sb1i125.92 (15)
C5—C4—H4120.0C21—O21—Sb1125.92 (15)
C4—C5—C6121.1 (4)Sb1i—O21—Sb189.65 (10)
C4—C5—H5119.5O1—Sb1—C1392.90 (11)
C6—C5—H5119.5O1—Sb1—C793.03 (11)
C1—C6—C5119.3 (3)C13—Sb1—C7103.24 (11)
C1—C6—H6120.3O1—Sb1—C1160.95 (11)
C5—C6—H6120.3C13—Sb1—C198.73 (12)
C12—C7—C8118.7 (3)C7—Sb1—C198.88 (12)
C12—C7—Sb1119.5 (2)O1—Sb1—O2172.27 (9)
C8—C7—Sb1121.8 (2)C13—Sb1—O2191.67 (10)
C7—C8—C9120.2 (4)C7—Sb1—O21159.72 (9)
C7—C8—H8119.9C1—Sb1—O2192.25 (10)
C9—C8—H8119.9O1—Sb1—O2075.01 (9)
C10—C9—C8120.4 (4)C13—Sb1—O20159.85 (10)
C10—C9—H9119.8C7—Sb1—O2093.61 (10)
C8—C9—H9119.8C1—Sb1—O2089.38 (10)
C9—C10—C11120.3 (4)O21—Sb1—O2069.47 (9)
C9—C10—H10119.8O1—Sb1—Sb1i38.96 (6)
C11—C10—H10119.8C13—Sb1—Sb1i115.98 (8)
C10—C11—C12120.0 (4)C7—Sb1—Sb1i114.86 (8)
C10—C11—H11120.0C1—Sb1—Sb1i122.00 (9)
C12—C11—H11120.0O21—Sb1—Sb1i45.18 (5)
C7—C12—C11120.3 (4)O20—Sb1—Sb1i45.31 (5)
C7—C12—H12119.9O20—C20—H20A110 (3)
C11—C12—H12119.9O20—C20—H20B110 (2)
C18—C13—C14118.2 (3)H20A—C20—H20B111 (3)
C18—C13—Sb1122.2 (2)O21—C21—H21A112 (3)
C14—C13—Sb1119.6 (2)O21—C21—H21B116 (2)
C15—C14—C13121.0 (3)H21A—C21—H21B103 (3)
C15—C14—H14119.5O90—C90—H90A110 (5)
C13—C14—H14119.5O90—C90—H90B111 (3)
C16—C15—C14119.6 (4)H90A—C90—H90B109 (4)
C16—C15—H15120.2C90—O90—H90C108 (5)
C14—C15—H15120.2O91—C91—H91A109 (2)
C17—C16—C15120.5 (3)O91—C91—H91B106 (2)
C17—C16—H16119.8H91A—C91—H91B114 (3)
C15—C16—H16119.8C91—O91—H91C118 (10)
C6—C1—C2—C30.6 (5)C8—C7—Sb1—C13102.7 (3)
Sb1—C1—C2—C3177.0 (2)C12—C7—Sb1—C1179.6 (3)
C1—C2—C3—C40.0 (5)C8—C7—Sb1—C11.5 (3)
C2—C3—C4—C50.3 (5)C12—C7—Sb1—O2157.9 (5)
C3—C4—C5—C60.0 (6)C8—C7—Sb1—O21121.0 (3)
C2—C1—C6—C50.8 (5)C12—C7—Sb1—O2090.5 (3)
Sb1—C1—C6—C5177.0 (3)C8—C7—Sb1—O2088.4 (3)
C4—C5—C6—C10.6 (6)C12—C7—Sb1—Sb1i48.8 (3)
C12—C7—C8—C91.9 (5)C8—C7—Sb1—Sb1i130.0 (2)
Sb1—C7—C8—C9177.0 (3)C6—C1—Sb1—O135.9 (5)
C7—C8—C9—C100.2 (6)C2—C1—Sb1—O1147.8 (3)
C8—C9—C10—C112.0 (6)C6—C1—Sb1—C13162.9 (3)
C9—C10—C11—C122.4 (6)C2—C1—Sb1—C1320.8 (2)
C8—C7—C12—C111.5 (5)C6—C1—Sb1—C792.1 (3)
Sb1—C7—C12—C11177.4 (3)C2—C1—Sb1—C784.1 (2)
C10—C11—C12—C70.6 (6)C6—C1—Sb1—O2170.8 (3)
C18—C13—C14—C151.3 (5)C2—C1—Sb1—O21112.9 (2)
Sb1—C13—C14—C15178.7 (3)C6—C1—Sb1—O201.4 (3)
C13—C14—C15—C160.5 (6)C2—C1—Sb1—O20177.7 (2)
C14—C15—C16—C171.9 (6)C6—C1—Sb1—Sb1i34.7 (3)
C15—C16—C17—C181.5 (6)C2—C1—Sb1—Sb1i149.0 (2)
C14—C13—C18—C171.7 (5)C21—O21—Sb1—O1169.6 (3)
Sb1—C13—C18—C17178.2 (3)Sb1i—O21—Sb1—O133.56 (9)
C16—C17—C18—C130.3 (5)C21—O21—Sb1—C1397.9 (3)
Sb1i—O1—Sb1—C13129.41 (12)Sb1i—O21—Sb1—C13126.07 (11)
Sb1i—O1—Sb1—C7127.15 (12)C21—O21—Sb1—C7124.4 (4)
Sb1i—O1—Sb1—C11.7 (4)Sb1i—O21—Sb1—C711.6 (4)
Sb1i—O1—Sb1—O2138.58 (10)C21—O21—Sb1—C10.9 (3)
Sb1i—O1—Sb1—O2034.23 (11)Sb1i—O21—Sb1—C1135.13 (11)
C18—C13—Sb1—O190.0 (3)C21—O21—Sb1—O2089.4 (3)
C14—C13—Sb1—O189.9 (3)Sb1i—O21—Sb1—O2046.64 (9)
C18—C13—Sb1—C7176.2 (3)C21—O21—Sb1—Sb1i136.1 (3)
C14—C13—Sb1—C73.9 (3)C20—O20—Sb1—O1100.6 (3)
C18—C13—Sb1—C174.9 (3)Sb1i—O20—Sb1—O129.84 (9)
C14—C13—Sb1—C1105.2 (3)C20—O20—Sb1—C13155.3 (3)
C18—C13—Sb1—O2117.6 (3)Sb1i—O20—Sb1—C1324.9 (4)
C14—C13—Sb1—O21162.3 (3)C20—O20—Sb1—C78.4 (3)
C18—C13—Sb1—O2037.8 (5)Sb1i—O20—Sb1—C7122.01 (11)
C14—C13—Sb1—O20142.1 (3)C20—O20—Sb1—C190.4 (3)
C18—C13—Sb1—Sb1i57.3 (3)Sb1i—O20—Sb1—C1139.13 (11)
C14—C13—Sb1—Sb1i122.6 (2)C20—O20—Sb1—O21176.9 (3)
C12—C7—Sb1—O115.3 (3)Sb1i—O20—Sb1—O2146.50 (9)
C8—C7—Sb1—O1163.6 (3)C20—O20—Sb1—Sb1i130.4 (3)
C12—C7—Sb1—C1378.4 (3)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O90—H90C···O10.83 (2)1.90 (3)2.718 (5)168 (7)
O91—H91C···O900.84 (2)1.81 (2)2.642 (7)180 (15)

Experimental details

Crystal data
Chemical formula[Sb2(C6H5)6(CH3O)2O]·2CH4O
Mr848.25
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)200
a, b, c (Å)10.7666 (3), 20.9205 (5), 16.5619 (5)
V3)3730.45 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.21 × 0.13 × 0.11
Data collection
DiffractometerOxford Xcalibur KappaCCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2005)
Tmin, Tmax0.923, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15055, 3877, 2632
Rint0.035
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.069, 1.07
No. of reflections3877
No. of parameters250
No. of restraints35
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.16, 0.91

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-III (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O90—H90C···O10.83 (2)1.90 (3)2.718 (5)168 (7)
O91—H91C···O900.84 (2)1.81 (2)2.642 (7)180 (15)
 

Acknowledgements

The authors thank Prof Klapötke for generous allocation of measurement time on the diffractometer.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBordner, J., Doak, G. O. & Everett, T. S. (1986). J. Am. Chem. Soc. 108, 4206–4213.  CSD CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoodgame, D. M. L. & Cotton, F. A. (1960). J. Am. Chem. Soc. 82, 5774–5776.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds