organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[(2-Hy­droxy-1-naphthyl)methyl­ene]benzohydrazide monohydrate

aDongchang College, Liaocheng University, Liaocheng, 250059, People's Republic of China
*Correspondence e-mail: konglingqian08@163.com

(Received 2 November 2009; accepted 3 December 2009; online 9 December 2009)

In the title compound, C18H14N2O2·H2O, the dihedral angle between the benzene ring and the naphthalene system is 5.18 (10)°. Intra­molecular N—H⋯O hydrogen bonds influence the molecular conformation. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds are observed as well as ππ inter­actions between the phenyl ring and the substituted ring of the naphthalene [centroid–centroid distance = 3.676 (11) Å].

Related literature

For background to Schiff bases in coordination chemistry, see: Chakraborty & Patel (1996[Chakraborty, J. & Patel, R. N. (1996). J. Indian Chem. Soc. 73, 191-195.]); Jeewoth et al. (1999[Jeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem. 24, 445-448.]). For their biological activity, see: Das et al. (1999[Das, A., Trousdale, M. D., Ren, S. & Lien, E. J. (1999). Antiviral Res. 44, 201-208.]). For related structures, see: Fun et al.(2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]); Nie (2008[Nie, Y. (2008). Acta Cryst. E64, o471.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O2·H2O

  • Mr = 308.33

  • Monoclinic, P 21 /c

  • a = 16.346 (6) Å

  • b = 7.192 (3) Å

  • c = 13.880 (5) Å

  • β = 111.949 (4)°

  • V = 1513.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.50 × 0.48 × 0.43 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.961

  • 7296 measured reflections

  • 2669 independent reflections

  • 1648 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.148

  • S = 1.07

  • 2669 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 2.11 2.899 (3) 152
O2—H2⋯N2 0.82 1.89 2.604 (3) 145
O3—H3C⋯O1i 0.85 2.03 2.882 (3) 179
O3—H3D⋯O1ii 0.85 1.88 2.734 (3) 179
Symmetry codes: (i) -x, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

Schiff bases are popular ligands in coordination chemistry due to their ease of synthesis and their ability to be readily modified both electronically and sterically. (Chakraborty et al., 1996; Jeewoth et al., 1999). Meanwhile, aromatic aldehyde Schiff bases have also attracted much attention due to their diverse biological activities, such as antimicrobial antibacterial, antiviral, anticancer activities etc (Das et al., 1999).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in reported the compound (Nie et al., 2008; Fun et al., 2008).

In the crystal structure, the C=N bond length in the molecule is 1.282 (3) °, showing the double-bond character. Meanwhile, the dihedral angle between the benzene ring (C3—C8) and the naphthalene plane in the Schiff base molecule is 5.18 (10) °, indicating that the two planes are almost coplanar.

Moreover, there exist one H2O molecule in the crystal unit, the crystal structure of the title compound consists of one two-dimension supramolecular structure was built from the connections of N—H···O, O—H..O hydrogen bonds and (Table 1.) two π···π stacking interactions between the rings (C2-C7) and (C9-C14) and their symmetry related counterparts (Symmetry code=-x+1, -y, -z+1 and centroid-to centroid distance = 3.676 (11) Å).

Related literature top

For background to Schiff bases in coordination chemistry, see: Chakraborty et al. (1996); Jeewoth et al. (1999). For their biological activity, see: Das et al. (1999). For related structures, see: Fun et al.(2008); Nie (2008).

Experimental top

2-Hydroxy-1-naphthaldehyde (3 mmol), benzohydrazide (3 mmol) and 10 ml methanol were mixed in 50 ml flask. After stirring 30 min at 373 K, the resulting mixture was recrystalized from methanol, affording the title compound as a colorless crystalline solid. Elemental analysis: calculated for C18H16N2O3: C 70.12, H 5.23, N 9.09%; found: C 70.18, H 5.15, N 9.14%.

Refinement top

All H atoms, except the H atoms of H2O, were placed in geometrically idealized positions (O—H = 0.82, N—H 0.86 and C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5 Ueq(C, N, O) (C,N, O). Meanwhile, The H atoms of free water molecule were placed in geometrically idealized positions (O—H = 0.85 Å) and treated as riding on O atom, with Uiso(H) = 1.2Ueq(O) (O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids, showing the intramolecular H-bond with dashed line.
[Figure 2] Fig. 2. A packing of (I) viewed down b-axis showing H-bond interactions with dashed lines. Symmetry codes: (i) -x, -y, -z+1; (ii) x, -y+1/2, z+1/2..
[Figure 3] Fig. 3. The π···π interactions of (I) with dashed lines. Symmetry codes: (A) -x+1, -y, -z+1.
(E)-N'-[(2-Hydroxy-1-naphthyl)methylene]benzohydrazide monohydrate top
Crystal data top
C18H14N2O2·H2OF(000) = 648
Mr = 308.33Dx = 1.353 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2137 reflections
a = 16.346 (6) Åθ = 2.7–26.8°
b = 7.192 (3) ŵ = 0.09 mm1
c = 13.880 (5) ÅT = 298 K
β = 111.949 (4)°Block, colourless
V = 1513.5 (10) Å30.50 × 0.48 × 0.43 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2669 independent reflections
Radiation source: fine-focus sealed tube1648 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 919
Tmin = 0.955, Tmax = 0.961k = 88
7296 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.5603P]
where P = (Fo2 + 2Fc2)/3
2669 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H14N2O2·H2OV = 1513.5 (10) Å3
Mr = 308.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.346 (6) ŵ = 0.09 mm1
b = 7.192 (3) ÅT = 298 K
c = 13.880 (5) Å0.50 × 0.48 × 0.43 mm
β = 111.949 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2669 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1648 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.961Rint = 0.027
7296 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
2669 reflectionsΔρmin = 0.21 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.03568 (12)0.2307 (3)0.50343 (16)0.0462 (5)
H10.03340.23630.56430.055*
N20.11241 (12)0.1782 (3)0.49103 (16)0.0482 (5)
O10.03364 (11)0.2630 (3)0.33109 (14)0.0679 (6)
O20.21163 (12)0.1127 (3)0.38534 (13)0.0711 (6)
H20.16750.14960.39410.107*
O30.06076 (12)0.1282 (3)0.71458 (14)0.0790 (6)
H3C0.05240.01280.70150.095*
H3D0.03120.16100.75070.095*
C10.03525 (15)0.2726 (3)0.41878 (19)0.0437 (6)
C20.11669 (14)0.3308 (3)0.43458 (18)0.0407 (6)
C30.12564 (16)0.3358 (4)0.5298 (2)0.0513 (6)
H30.07840.30250.58970.062*
C40.20439 (17)0.3902 (4)0.5361 (2)0.0602 (7)
H40.21000.39330.60030.072*
C50.27411 (17)0.4393 (4)0.4486 (2)0.0594 (7)
H50.32710.47550.45340.071*
C60.26626 (17)0.4356 (4)0.3545 (2)0.0615 (7)
H60.31400.46910.29510.074*
C70.18785 (16)0.3825 (3)0.34665 (19)0.0531 (6)
H70.18270.38140.28210.064*
C80.17844 (15)0.1408 (3)0.5745 (2)0.0466 (6)
H80.17270.15290.63840.056*
C90.26175 (14)0.0802 (3)0.57090 (18)0.0412 (6)
C100.27378 (16)0.0654 (3)0.47759 (19)0.0496 (6)
C110.35283 (17)0.0052 (4)0.4732 (2)0.0592 (7)
H110.36010.01170.41000.071*
C120.41789 (17)0.0633 (4)0.5610 (2)0.0559 (7)
H120.46900.11310.55680.067*
C130.41064 (15)0.0507 (3)0.65878 (19)0.0475 (6)
C140.33263 (14)0.0262 (3)0.66492 (18)0.0422 (6)
C150.32900 (18)0.0419 (4)0.7644 (2)0.0587 (7)
H150.27970.09530.77150.070*
C160.3967 (2)0.0201 (5)0.8507 (2)0.0741 (9)
H160.39270.00770.91550.089*
C170.47164 (19)0.1017 (4)0.8435 (2)0.0724 (8)
H170.51640.14680.90260.087*
C180.47854 (16)0.1145 (4)0.7497 (2)0.0603 (7)
H180.52900.16650.74500.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0417 (11)0.0484 (12)0.0551 (12)0.0012 (9)0.0258 (10)0.0028 (10)
N20.0418 (12)0.0468 (12)0.0622 (14)0.0010 (9)0.0266 (10)0.0019 (10)
O10.0670 (12)0.0933 (15)0.0546 (11)0.0107 (10)0.0355 (10)0.0084 (10)
O20.0629 (12)0.0993 (16)0.0516 (11)0.0146 (11)0.0218 (9)0.0020 (11)
O30.0876 (15)0.1016 (16)0.0615 (12)0.0114 (12)0.0435 (11)0.0008 (12)
C10.0469 (14)0.0405 (13)0.0506 (15)0.0026 (11)0.0261 (12)0.0028 (11)
C20.0388 (13)0.0358 (12)0.0495 (14)0.0043 (10)0.0189 (11)0.0012 (10)
C30.0439 (14)0.0600 (16)0.0530 (15)0.0013 (12)0.0215 (12)0.0023 (13)
C40.0588 (17)0.0674 (18)0.0662 (17)0.0024 (14)0.0371 (14)0.0011 (15)
C50.0441 (15)0.0564 (17)0.083 (2)0.0031 (12)0.0301 (15)0.0041 (15)
C60.0449 (15)0.0650 (18)0.0677 (19)0.0042 (13)0.0131 (13)0.0003 (15)
C70.0535 (15)0.0539 (16)0.0523 (15)0.0019 (12)0.0203 (12)0.0010 (12)
C80.0460 (14)0.0426 (14)0.0575 (15)0.0036 (11)0.0266 (12)0.0042 (12)
C90.0388 (13)0.0376 (13)0.0516 (14)0.0026 (10)0.0219 (11)0.0042 (11)
C100.0451 (14)0.0538 (15)0.0523 (16)0.0010 (11)0.0209 (12)0.0023 (12)
C110.0546 (16)0.0729 (18)0.0605 (17)0.0019 (14)0.0334 (14)0.0056 (14)
C120.0446 (15)0.0598 (17)0.0730 (19)0.0016 (12)0.0329 (14)0.0046 (14)
C130.0403 (13)0.0417 (13)0.0618 (16)0.0052 (11)0.0206 (12)0.0011 (12)
C140.0409 (13)0.0392 (13)0.0513 (15)0.0075 (10)0.0227 (11)0.0040 (11)
C150.0541 (16)0.0702 (19)0.0572 (17)0.0040 (13)0.0271 (14)0.0011 (14)
C160.074 (2)0.097 (2)0.0544 (18)0.0059 (18)0.0268 (16)0.0034 (16)
C170.0600 (19)0.081 (2)0.0658 (19)0.0025 (16)0.0115 (15)0.0121 (17)
C180.0438 (15)0.0566 (17)0.0778 (19)0.0005 (13)0.0197 (14)0.0037 (15)
Geometric parameters (Å, º) top
N1—C11.341 (3)C7—H70.9300
N1—N21.381 (2)C8—C91.448 (3)
N1—H10.8600C8—H80.9300
N2—C81.282 (3)C9—C101.385 (3)
O1—C11.229 (3)C9—C141.437 (3)
O2—C101.347 (3)C10—C111.410 (3)
O2—H20.8200C11—C121.349 (3)
O3—H3C0.8500C11—H110.9301
O3—H3D0.8501C12—C131.409 (3)
C1—C21.488 (3)C12—H120.9300
C2—C31.383 (3)C13—C181.410 (3)
C2—C71.385 (3)C13—C141.421 (3)
C3—C41.379 (3)C14—C151.408 (3)
C3—H30.9300C15—C161.367 (4)
C4—C51.365 (4)C15—H150.9300
C4—H40.9300C16—C171.395 (4)
C5—C61.361 (4)C16—H160.9300
C5—H50.9301C17—C181.352 (4)
C6—C71.380 (3)C17—H170.9300
C6—H60.9301C18—H180.9300
C1—N1—N2118.7 (2)C10—C9—C14118.7 (2)
C1—N1—H1120.6C10—C9—C8121.3 (2)
N2—N1—H1120.6C14—C9—C8120.0 (2)
C8—N2—N1116.2 (2)O2—C10—C9123.3 (2)
C10—O2—H2109.5O2—C10—C11115.3 (2)
H3C—O3—H3D108.4C9—C10—C11121.4 (2)
O1—C1—N1121.6 (2)C12—C11—C10119.9 (2)
O1—C1—C2120.9 (2)C12—C11—H11120.1
N1—C1—C2117.5 (2)C10—C11—H11120.1
C3—C2—C7118.7 (2)C11—C12—C13121.9 (2)
C3—C2—C1124.6 (2)C11—C12—H12119.1
C7—C2—C1116.6 (2)C13—C12—H12119.1
C4—C3—C2120.2 (2)C12—C13—C18121.3 (2)
C4—C3—H3119.9C12—C13—C14118.9 (2)
C2—C3—H3119.9C18—C13—C14119.8 (2)
C5—C4—C3120.4 (3)C15—C14—C13117.2 (2)
C5—C4—H4119.8C15—C14—C9123.6 (2)
C3—C4—H4119.8C13—C14—C9119.2 (2)
C6—C5—C4120.1 (3)C16—C15—C14121.1 (3)
C6—C5—H5119.9C16—C15—H15119.5
C4—C5—H5119.9C14—C15—H15119.5
C5—C6—C7120.3 (2)C15—C16—C17121.3 (3)
C5—C6—H6119.8C15—C16—H16119.4
C7—C6—H6119.8C17—C16—H16119.4
C6—C7—C2120.2 (2)C18—C17—C16119.3 (3)
C6—C7—H7119.9C18—C17—H17120.3
C2—C7—H7119.9C16—C17—H17120.3
N2—C8—C9121.1 (2)C17—C18—C13121.2 (3)
N2—C8—H8119.4C17—C18—H18119.4
C9—C8—H8119.4C13—C18—H18119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.862.112.899 (3)152
O2—H2···N20.821.892.604 (3)145
O3—H3C···O1i0.852.032.882 (3)179
O3—H3D···O1ii0.851.882.734 (3)179
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H14N2O2·H2O
Mr308.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.346 (6), 7.192 (3), 13.880 (5)
β (°) 111.949 (4)
V3)1513.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.48 × 0.43
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
7296, 2669, 1648
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.148, 1.07
No. of reflections2669
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.862.112.899 (3)151.9
O2—H2···N20.821.892.604 (3)145.3
O3—H3C···O1i0.852.032.882 (3)179.1
O3—H3D···O1ii0.851.882.734 (3)179.2
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. LG0801).

References

First citationChakraborty, J. & Patel, R. N. (1996). J. Indian Chem. Soc. 73, 191–195.  CAS Google Scholar
First citationDas, A., Trousdale, M. D., Ren, S. & Lien, E. J. (1999). Antiviral Res. 44, 201–208.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem. 24, 445–448.  Web of Science CrossRef CAS Google Scholar
First citationNie, Y. (2008). Acta Cryst. E64, o471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds