organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(4-meth­oxy­phen­yl)-4-phenyl­pyridine

aCollege of Life Sciences and Chemisrey, Tianshui Normal University, Tianshui, 741000, People's Republic of China
*Correspondence e-mail: xndong@163.com

(Received 8 November 2009; accepted 28 November 2009; online 4 December 2009)

In the title compound, C25H21NO2, which was synthesized by the condensation of 2,6-bis­(4-methoxy­phen­yl)-4-phenyl­pyridinium tetra­fluoro­borate with ammonia under microwave irradiation and solvent-free conditions, the angles between the central pyridine ring and the three benzene rings are 22.3 (2), 35.3 (2) and 19.8 (2)°. In the crystal, inter­molecular C—H⋯π hydrogen-bond inter­actions link the mol­ecules.

Related literature

For the biological properties of pyridines, see Keys & Hamilton (1987[Keys, L. D. & Hamilton, G. A. (1987). J. Am. Chem. Soc. 109, 2156-2163.]); Chen et al.(1995[Chen, C., Tagami, K. & Kishi, Y. (1995). J. Org. Chem. 60, 5386-5387.]). For related structures, see: Ondráček et al. (1994[Ondráček, J., Novotný, J., Petrů, M., Lhoták, P. & Kuthan, J. (1994). Acta Cryst. C50, 1809-1811.]).

[Scheme 1]

Experimental

Crystal data
  • C25H21NO2

  • Mr = 367.43

  • Monoclinic, P 21 /n

  • a = 6.379 (3) Å

  • b = 15.538 (8) Å

  • c = 20.51 (1) Å

  • β = 94.281 (7)°

  • V = 2027.3 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.41 × 0.18 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.994

  • 10098 measured reflections

  • 3566 independent reflections

  • 1522 reflections with I > 2σ(I)

  • Rint = 0.109

Refinement
  • R[F2 > 2σ(F2)] = 0.099

  • wR(F2) = 0.191

  • S = 1.04

  • 3566 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25CCg1i 0.96 2.82 3.605 140
Symmetry code: (i) -x, -y, -z. Cg1 is the centroid of the C19–C24 ring.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It was well known that pyridine ring systems have represented an important class of compounds not only for their theoretical interest but also because they displayed strong biological activity (Keys, et al., 1987). Moreover, pyridine derivatives have remarkable versatility in synthetic organic chemistry as intermediates in the preparation of nature products and as ligands recently used in asymmetric synthesis (Chen, et al., 1995).

In this paper, we present a new crystal, 2,6-bis(4'-methoxyphenyl)-4-phenylpyridine, (I), which was synthesized using benzaldehyde and 4-methoxylacetophenone as starting material.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in reported the compound (Ondráček et al., 1994). The angles between the center pyridine ring and benzene rings (c6 - c11), (c13 - c18) and (c19 - c24) are 22.28 (19)°, 35.29 (18)° and 19.81 (20)°, respectively, which show the pyridine ring and three benzene rings aren't coplanar. Moreover, the crystal supramolecular structure was built from the connections of C—H···π hydrogen bonding interactions, as shown in Table 1 and Fig. 2.

Related literature top

For the biological properties of pyridines, see Keys & Hamilton (1987); Chen et al.(1995). For related structures, see: Ondráček et al. (1994). Cg1 is the centroid of the C19–C24 ring

Experimental top

Benzaldehyde (0.3 mmol) and 4-methoxylacetophenone (0.6 mmol), ammonia (1.0 mmol) under boron trifluoride ether (0.1 mmol) catalyzed, the mixture were mixed in 50 ml flash. After eradiating 3 min at 375 W, the mixture then cooled slowly to room temperature affording the title compound, then recrystallized from ethanol, affording the title compound as a colorless crystalline solid. Elemental analysis: calculated for C25H21NO2: C 81.72, H 5.76, N 3.81%; found: C 81.68, H 5.75, N 3.72%.

Refinement top

All H atoms were positioned geometrically, with C—H=0.93- 0.96 Å, and refined as riding, with Uiso(H)=1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title complex with atomic numbering scheme and thermal ellipsoids at 30% probability level.
[Figure 2] Fig. 2. The one-dimensional chain structure was built by the C—H···π H-bond interactions (dashed lines).
2,6-Bis(4-methoxyphenyl)-4-phenylpyridine top
Crystal data top
C25H21NO2F(000) = 776
Mr = 367.43Dx = 1.204 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 964 reflections
a = 6.379 (3) Åθ = 2.6–25.1°
b = 15.538 (8) ŵ = 0.08 mm1
c = 20.51 (1) ÅT = 298 K
β = 94.281 (7)°Needle, colourless
V = 2027.3 (17) Å30.41 × 0.18 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3566 independent reflections
Radiation source: fine-focus sealed tube1522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.109
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.970, Tmax = 0.994k = 1816
10098 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.099Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.3542P]
where P = (Fo2 + 2Fc2)/3
3566 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C25H21NO2V = 2027.3 (17) Å3
Mr = 367.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.379 (3) ŵ = 0.08 mm1
b = 15.538 (8) ÅT = 298 K
c = 20.51 (1) Å0.41 × 0.18 × 0.08 mm
β = 94.281 (7)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3566 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1522 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.994Rint = 0.109
10098 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0990 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
3566 reflectionsΔρmin = 0.16 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2077 (6)0.7947 (2)0.20968 (17)0.0595 (10)
O10.0669 (6)0.8942 (2)0.49408 (14)0.0804 (11)
O20.0509 (6)0.9151 (2)0.08307 (14)0.0762 (10)
C10.2860 (7)0.7601 (3)0.2683 (2)0.0539 (12)
C20.4486 (7)0.7015 (3)0.2720 (2)0.0608 (13)
H20.49840.68060.31270.073*
C30.5412 (7)0.6725 (3)0.2161 (2)0.0569 (12)
C40.4592 (7)0.7086 (3)0.1567 (2)0.0602 (13)
H40.51560.69270.11800.072*
C50.2955 (7)0.7675 (3)0.1551 (2)0.0550 (12)
C60.1864 (7)0.7938 (3)0.3266 (2)0.0542 (12)
C70.0101 (8)0.8304 (3)0.3224 (2)0.0724 (15)
H70.08540.83180.28170.087*
C80.1032 (8)0.8657 (3)0.3762 (2)0.0759 (16)
H80.23560.89090.37120.091*
C90.0074 (8)0.8620 (3)0.4375 (2)0.0613 (13)
C100.2024 (8)0.8247 (3)0.4432 (2)0.0637 (14)
H100.27530.82160.48410.076*
C110.2932 (7)0.7916 (3)0.3894 (2)0.0619 (13)
H110.42680.76750.39470.074*
C120.2641 (9)0.9374 (4)0.4904 (2)0.105 (2)
H12A0.26140.98430.46000.157*
H12B0.29060.95920.53280.157*
H12C0.37340.89780.47590.157*
C130.7134 (7)0.6082 (3)0.2196 (2)0.0548 (12)
C140.7190 (8)0.5414 (3)0.2660 (2)0.0671 (14)
H140.61170.53670.29400.081*
C150.8826 (9)0.4826 (3)0.2703 (2)0.0787 (16)
H150.88300.43870.30110.094*
C161.0438 (9)0.4878 (3)0.2299 (3)0.0758 (16)
H161.15410.44860.23350.091*
C171.0390 (9)0.5529 (4)0.1837 (3)0.0803 (16)
H171.14730.55730.15600.096*
C180.8745 (8)0.6116 (3)0.1782 (2)0.0685 (14)
H180.87270.65390.14620.082*
C190.2008 (8)0.8072 (3)0.0924 (2)0.0543 (12)
C200.0029 (8)0.8437 (3)0.0891 (2)0.0613 (13)
H200.07150.84380.12640.074*
C210.0899 (7)0.8807 (3)0.0316 (2)0.0645 (13)
H210.22330.90500.03070.077*
C220.0210 (8)0.8803 (3)0.0238 (2)0.0605 (13)
C230.2184 (8)0.8437 (3)0.0216 (2)0.0661 (14)
H230.29220.84320.05900.079*
C240.3083 (7)0.8077 (3)0.0356 (2)0.0641 (13)
H240.44190.78350.03620.077*
C250.2637 (9)0.9444 (4)0.0914 (2)0.0928 (18)
H25A0.35660.89850.08130.139*
H25B0.29490.96230.13590.139*
H25C0.28260.99210.06270.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.071 (3)0.063 (3)0.045 (2)0.004 (2)0.001 (2)0.001 (2)
O10.098 (3)0.090 (3)0.056 (2)0.012 (2)0.022 (2)0.0092 (19)
O20.093 (3)0.089 (3)0.045 (2)0.004 (2)0.0074 (18)0.0110 (17)
C10.068 (3)0.055 (3)0.039 (3)0.007 (3)0.005 (2)0.001 (2)
C20.076 (4)0.063 (3)0.042 (3)0.011 (3)0.001 (2)0.002 (2)
C30.068 (3)0.058 (3)0.044 (3)0.002 (3)0.001 (2)0.000 (2)
C40.074 (4)0.065 (3)0.042 (3)0.007 (3)0.008 (3)0.002 (2)
C50.065 (3)0.058 (3)0.042 (3)0.002 (3)0.003 (2)0.000 (2)
C60.059 (3)0.059 (3)0.044 (3)0.009 (3)0.000 (2)0.002 (2)
C70.076 (4)0.098 (4)0.042 (3)0.010 (3)0.001 (3)0.002 (3)
C80.068 (4)0.101 (4)0.058 (3)0.022 (3)0.000 (3)0.002 (3)
C90.069 (4)0.072 (4)0.045 (3)0.002 (3)0.013 (3)0.001 (3)
C100.077 (4)0.076 (4)0.037 (3)0.007 (3)0.001 (3)0.001 (2)
C110.069 (3)0.066 (3)0.049 (3)0.013 (3)0.002 (3)0.003 (3)
C120.092 (5)0.138 (5)0.089 (4)0.011 (4)0.033 (4)0.029 (4)
C130.063 (3)0.054 (3)0.046 (3)0.004 (3)0.002 (2)0.008 (2)
C140.072 (4)0.072 (4)0.057 (3)0.010 (3)0.006 (3)0.006 (3)
C150.092 (5)0.073 (4)0.070 (4)0.008 (4)0.007 (4)0.005 (3)
C160.082 (4)0.066 (4)0.077 (4)0.015 (3)0.011 (3)0.016 (3)
C170.076 (4)0.091 (4)0.074 (4)0.004 (3)0.007 (3)0.015 (3)
C180.074 (4)0.068 (4)0.064 (3)0.008 (3)0.010 (3)0.002 (3)
C190.064 (3)0.059 (3)0.040 (3)0.001 (2)0.003 (2)0.000 (2)
C200.068 (4)0.076 (4)0.041 (3)0.000 (3)0.011 (2)0.004 (2)
C210.069 (3)0.076 (4)0.047 (3)0.009 (3)0.004 (3)0.004 (3)
C220.078 (4)0.065 (3)0.037 (3)0.002 (3)0.002 (3)0.001 (2)
C230.073 (4)0.084 (4)0.041 (3)0.007 (3)0.006 (3)0.002 (3)
C240.065 (3)0.077 (4)0.049 (3)0.006 (3)0.003 (3)0.003 (3)
C250.089 (5)0.114 (5)0.070 (4)0.009 (4)0.024 (3)0.015 (3)
Geometric parameters (Å, º) top
N1—C51.356 (5)C12—H12B0.9600
N1—C11.376 (5)C12—H12C0.9600
O1—C91.379 (5)C13—C181.381 (6)
O1—C121.423 (5)C13—C141.406 (6)
O2—C221.378 (5)C14—C151.385 (6)
O2—C251.430 (5)C14—H140.9300
C1—C21.378 (5)C15—C161.370 (6)
C1—C61.491 (5)C15—H150.9300
C2—C31.402 (5)C16—C171.384 (6)
C2—H20.9300C16—H160.9300
C3—C41.406 (5)C17—C181.388 (6)
C3—C131.483 (6)C17—H170.9300
C4—C51.387 (5)C18—H180.9300
C4—H40.9300C19—C201.381 (6)
C5—C191.512 (6)C19—C241.394 (5)
C6—C71.373 (6)C20—C211.403 (5)
C6—C111.412 (5)C20—H200.9300
C7—C81.404 (6)C21—C221.382 (6)
C7—H70.9300C21—H210.9300
C8—C91.396 (5)C22—C231.379 (6)
C8—H80.9300C23—C241.385 (5)
C9—C101.369 (6)C23—H230.9300
C10—C111.383 (5)C24—H240.9300
C10—H100.9300C25—H25A0.9600
C11—H110.9300C25—H25B0.9600
C12—H12A0.9600C25—H25C0.9600
C5—N1—C1117.0 (4)C18—C13—C14117.4 (4)
C9—O1—C12119.0 (4)C18—C13—C3121.8 (4)
C22—O2—C25118.8 (4)C14—C13—C3120.7 (4)
N1—C1—C2121.9 (4)C15—C14—C13120.7 (5)
N1—C1—C6114.5 (4)C15—C14—H14119.6
C2—C1—C6123.5 (4)C13—C14—H14119.6
C1—C2—C3121.9 (4)C16—C15—C14121.2 (5)
C1—C2—H2119.1C16—C15—H15119.4
C3—C2—H2119.1C14—C15—H15119.4
C2—C3—C4115.3 (4)C15—C16—C17118.5 (5)
C2—C3—C13122.2 (4)C15—C16—H16120.7
C4—C3—C13122.4 (4)C17—C16—H16120.7
C5—C4—C3121.0 (4)C16—C17—C18120.9 (5)
C5—C4—H4119.5C16—C17—H17119.6
C3—C4—H4119.5C18—C17—H17119.6
N1—C5—C4122.8 (4)C13—C18—C17121.2 (5)
N1—C5—C19114.4 (4)C13—C18—H18119.4
C4—C5—C19122.8 (4)C17—C18—H18119.4
C7—C6—C11116.3 (4)C20—C19—C24117.5 (4)
C7—C6—C1122.4 (4)C20—C19—C5121.0 (4)
C11—C6—C1121.2 (4)C24—C19—C5121.5 (4)
C6—C7—C8123.3 (4)C19—C20—C21122.4 (4)
C6—C7—H7118.3C19—C20—H20118.8
C8—C7—H7118.3C21—C20—H20118.8
C9—C8—C7118.5 (4)C22—C21—C20118.6 (5)
C9—C8—H8120.7C22—C21—H21120.7
C7—C8—H8120.7C20—C21—H21120.7
C10—C9—O1116.7 (4)O2—C22—C23115.7 (4)
C10—C9—C8119.3 (4)O2—C22—C21124.5 (5)
O1—C9—C8124.1 (5)C23—C22—C21119.8 (4)
C9—C10—C11121.4 (4)C22—C23—C24120.9 (4)
C9—C10—H10119.3C22—C23—H23119.5
C11—C10—H10119.3C24—C23—H23119.5
C10—C11—C6121.1 (4)C23—C24—C19120.7 (4)
C10—C11—H11119.4C23—C24—H24119.6
C6—C11—H11119.4C19—C24—H24119.6
O1—C12—H12A109.5O2—C25—H25A109.5
O1—C12—H12B109.5O2—C25—H25B109.5
H12A—C12—H12B109.5H25A—C25—H25B109.5
O1—C12—H12C109.5O2—C25—H25C109.5
H12A—C12—H12C109.5H25A—C25—H25C109.5
H12B—C12—H12C109.5H25B—C25—H25C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25C···Cg1i0.962.823.605140
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC25H21NO2
Mr367.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.379 (3), 15.538 (8), 20.51 (1)
β (°) 94.281 (7)
V3)2027.3 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.41 × 0.18 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
10098, 3566, 1522
Rint0.109
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.099, 0.191, 1.04
No. of reflections3566
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25C···Cg1i0.962.823.605139.6
Symmetry code: (i) x, y, z.
 

Acknowledgements

The author acknowledges the support of the Foundation of Tianshui Normal University.

References

First citationChen, C., Tagami, K. & Kishi, Y. (1995). J. Org. Chem. 60, 5386–5387.  CrossRef CAS Web of Science Google Scholar
First citationKeys, L. D. & Hamilton, G. A. (1987). J. Am. Chem. Soc. 109, 2156–2163.  CrossRef CAS Web of Science Google Scholar
First citationOndráček, J., Novotný, J., Petrů, M., Lhoták, P. & Kuthan, J. (1994). Acta Cryst. C50, 1809–1811.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds