organic compounds
2-[2-(4-Methoxyphenyl)-2,3-dihydro-1H-1,5-benzodiazepin-4-yl]phenol
aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire de Chimie Organique, UFR SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire
*Correspondence e-mail: bibilamayayabisseyou@yahoo.fr
In the structure of title compound, C22H20O2N2, the 11-membered benzodiazepine ring system adopts a distorted boat conformation. The benzene ring of this system forms dihedral angles of 89.69 (12) and 48.82 (12)° with those of the phenol and methoxyphenyl substituents, respectively. The dihedral angle between the benzene rings is 49.61 (11)°. An intramolecular O—H⋯N hydrogen bond generates an S(6) ring.
Related literature
For the biological activity of heterocyclic scaffolds containing nitrogen atoms, see: MacDonald (2002); Gringauz (1999); Albright et al. (1998); Rahbaek et al. (1999). For related structures, see: Ravichandran et al. (2009a,b,c,d). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the weighting scheme, see: Prince (1982); Watkin (1994).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536809052258/bq2181sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809052258/bq2181Isup2.hkl
To a solution of 1-(2-hydroxyphenyl)-3-(p-tolyl) propenone (1.3 g, 5.4 mmol) and 1, 2-diaminobenzene in anhydrous ethanol (20 ml), was added triethylamine (6 ml, 32.4 mmol). The reaction mixture was stirred under shelter from the light for 24 h. The resulting mixture was cooled at room temperature then kept in the freezer all night long. The precipitate was then filtered and purified by
silica gel. Elution solvent: hexane/ethyl acetate (90/10). We obtained yellow single crystals of title compound with a yield of 56% (m.p.: 413–415 K; Rf: 1/2, hexane/ethyl acetate: 80/20).The H atoms were all located in a difference of Fourier map. They were all initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.95–0.97 Å, O—H = 0.87 Å, N—H = 0.88 Å and Uiso(H)in the range 1.2–1.7 times Ueq of the parent atom), after which their positions were refined with riding constraints.
Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).Fig. 1. The molecular structure of the title compound and the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. |
C22H20N2O2 | F(000) = 1456 |
Mr = 344.41 | Dx = 1.305 Mg m−3 |
Monoclinic, C2/c | Melting point = 413–415 K |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 27.5064 (5) Å | Cell parameters from 19187 reflections |
b = 7.3811 (2) Å | θ = 0–0° |
c = 19.5038 (4) Å | µ = 0.08 mm−1 |
β = 117.699 (2)° | T = 223 K |
V = 3506.02 (15) Å3 | Block, yellow |
Z = 8 | 0.30 × 0.20 × 0.15 mm |
Nonius KappaCCD diffractometer | Rint = 0.06 |
Graphite monochromator | θmax = 29.1°, θmin = 1.7° |
ϕ and ω scans | h = −37→32 |
19187 measured reflections | k = −10→10 |
2507 independent reflections | l = −25→25 |
2836 reflections with I > 3σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.055 | H-atom parameters constrained |
wR(F2) = 0.065 | Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 76.3 80.0 28.8 -10.0 -11.5 |
S = 1.04 | (Δ/σ)max = 0.000374 |
2507 reflections | Δρmax = 0.25 e Å−3 |
235 parameters | Δρmin = −0.25 e Å−3 |
0 restraints |
C22H20N2O2 | V = 3506.02 (15) Å3 |
Mr = 344.41 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 27.5064 (5) Å | µ = 0.08 mm−1 |
b = 7.3811 (2) Å | T = 223 K |
c = 19.5038 (4) Å | 0.30 × 0.20 × 0.15 mm |
β = 117.699 (2)° |
Nonius KappaCCD diffractometer | 2836 reflections with I > 3σ(I) |
19187 measured reflections | Rint = 0.06 |
2507 independent reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.25 e Å−3 |
2507 reflections | Δρmin = −0.25 e Å−3 |
235 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.93812 (7) | 0.1834 (2) | 0.28604 (9) | 0.0613 | |
O2 | 0.74005 (6) | 0.9744 (2) | 0.19252 (11) | 0.0715 | |
N1 | 0.92187 (7) | 0.2773 (2) | 0.15267 (10) | 0.0441 | |
N2 | 0.82826 (7) | 0.4219 (3) | 0.02002 (10) | 0.0518 | |
C1 | 0.90766 (9) | 0.2197 (3) | 0.07668 (13) | 0.0465 | |
C2 | 0.86133 (9) | 0.2877 (3) | 0.01157 (13) | 0.0481 | |
C3 | 0.84587 (10) | 0.2063 (4) | −0.06017 (14) | 0.0600 | |
C4 | 0.87638 (12) | 0.0637 (4) | −0.06710 (17) | 0.0694 | |
C5 | 0.92265 (12) | 0.0009 (4) | −0.00312 (18) | 0.0690 | |
C6 | 0.93752 (10) | 0.0773 (3) | 0.06788 (16) | 0.0572 | |
C7 | 0.92184 (7) | 0.4477 (3) | 0.16870 (12) | 0.0385 | |
C8 | 0.91134 (8) | 0.5878 (3) | 0.10725 (12) | 0.0404 | |
C9 | 0.85020 (8) | 0.6032 (3) | 0.04950 (12) | 0.0435 | |
C10 | 0.81802 (8) | 0.6940 (3) | 0.08532 (11) | 0.0405 | |
C11 | 0.82500 (9) | 0.8789 (3) | 0.10081 (14) | 0.0547 | |
C12 | 0.79940 (9) | 0.9683 (3) | 0.13693 (15) | 0.0584 | |
C13 | 0.76448 (8) | 0.8738 (3) | 0.15756 (14) | 0.0526 | |
C14 | 0.75569 (9) | 0.6925 (3) | 0.14123 (13) | 0.0509 | |
C15 | 0.78302 (8) | 0.6032 (3) | 0.10597 (12) | 0.0475 | |
C16 | 0.93285 (8) | 0.4968 (3) | 0.24729 (12) | 0.0384 | |
C17 | 0.93531 (8) | 0.6780 (3) | 0.27066 (12) | 0.0442 | |
C18 | 0.94419 (8) | 0.7245 (3) | 0.34386 (13) | 0.0506 | |
C19 | 0.95159 (9) | 0.5901 (3) | 0.39714 (13) | 0.0532 | |
C20 | 0.95014 (9) | 0.4115 (3) | 0.37696 (13) | 0.0532 | |
C21 | 0.94043 (8) | 0.3622 (3) | 0.30257 (13) | 0.0455 | |
C22 | 0.69528 (10) | 0.8907 (4) | 0.19955 (17) | 0.0766 | |
H82 | 0.9309 | 0.5495 | 0.0775 | 0.0489* | |
H81 | 0.9244 | 0.7079 | 0.1309 | 0.0491* | |
H191 | 0.9568 | 0.6222 | 0.4495 | 0.0668* | |
H91 | 0.8471 | 0.6809 | 0.0055 | 0.0540* | |
H111 | 0.8489 | 0.9442 | 0.0849 | 0.0673* | |
H141 | 0.7308 | 0.6258 | 0.1547 | 0.0624* | |
H151 | 0.7763 | 0.4730 | 0.0942 | 0.0604* | |
H201 | 0.9565 | 0.3167 | 0.4133 | 0.0656* | |
H51 | 0.9445 | −0.0943 | −0.0083 | 0.0953* | |
H171 | 0.9305 | 0.7735 | 0.2334 | 0.0558* | |
H181 | 0.9460 | 0.8507 | 0.3583 | 0.0644* | |
H21 | 0.7927 | 0.4133 | −0.0098 | 0.0665* | |
H41 | 0.8660 | 0.0108 | −0.1167 | 0.0911* | |
H121 | 0.8062 | 1.0951 | 0.1497 | 0.0723* | |
H31 | 0.8135 | 0.2496 | −0.1043 | 0.0789* | |
H61 | 0.9693 | 0.0325 | 0.1134 | 0.0794* | |
H222 | 0.6805 | 0.9858 | 0.2210 | 0.1264* | |
H223 | 0.6683 | 0.8514 | 0.1473 | 0.1269* | |
H221 | 0.7094 | 0.7849 | 0.2350 | 0.1273* | |
H11 | 0.9322 | 0.1725 | 0.2385 | 0.0949* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0752 (11) | 0.0399 (10) | 0.0615 (10) | 0.0001 (8) | 0.0257 (9) | 0.0135 (8) |
O2 | 0.0518 (10) | 0.0654 (12) | 0.1058 (14) | −0.0043 (9) | 0.0437 (10) | −0.0231 (10) |
N1 | 0.0415 (10) | 0.0383 (10) | 0.0543 (11) | −0.0021 (8) | 0.0238 (9) | 0.0006 (8) |
N2 | 0.0363 (9) | 0.0547 (12) | 0.0585 (12) | −0.0069 (9) | 0.0171 (9) | −0.0094 (10) |
C1 | 0.0465 (12) | 0.0374 (12) | 0.0636 (15) | −0.0115 (10) | 0.0324 (12) | −0.0060 (11) |
C2 | 0.0481 (13) | 0.0476 (13) | 0.0560 (14) | −0.0169 (11) | 0.0305 (11) | −0.0092 (11) |
C3 | 0.0607 (15) | 0.0623 (16) | 0.0641 (16) | −0.0240 (13) | 0.0348 (13) | −0.0153 (13) |
C4 | 0.0840 (19) | 0.0658 (18) | 0.0814 (19) | −0.0386 (16) | 0.0579 (17) | −0.0348 (16) |
C5 | 0.0725 (18) | 0.0542 (16) | 0.100 (2) | −0.0212 (14) | 0.0570 (18) | −0.0257 (16) |
C6 | 0.0564 (13) | 0.0436 (13) | 0.0811 (17) | −0.0112 (12) | 0.0401 (13) | −0.0116 (13) |
C7 | 0.0296 (10) | 0.0354 (11) | 0.0507 (12) | −0.0019 (8) | 0.0187 (9) | 0.0036 (9) |
C8 | 0.0369 (10) | 0.0366 (11) | 0.0494 (12) | −0.0043 (9) | 0.0216 (9) | 0.0028 (10) |
C9 | 0.0388 (11) | 0.0449 (13) | 0.0442 (12) | −0.0031 (10) | 0.0171 (9) | 0.0070 (10) |
C10 | 0.0321 (10) | 0.0391 (12) | 0.0441 (12) | −0.0001 (9) | 0.0123 (9) | 0.0076 (9) |
C11 | 0.0426 (12) | 0.0419 (14) | 0.0816 (17) | −0.0022 (10) | 0.0307 (12) | 0.0095 (12) |
C12 | 0.0417 (12) | 0.0384 (13) | 0.0939 (19) | −0.0027 (10) | 0.0305 (13) | −0.0044 (13) |
C13 | 0.0370 (12) | 0.0511 (14) | 0.0664 (15) | 0.0017 (11) | 0.0211 (11) | −0.0061 (12) |
C14 | 0.0436 (12) | 0.0480 (14) | 0.0668 (15) | −0.0064 (11) | 0.0304 (11) | −0.0008 (12) |
C15 | 0.0457 (12) | 0.0391 (12) | 0.0596 (14) | −0.0059 (10) | 0.0262 (11) | 0.0006 (11) |
C16 | 0.0296 (10) | 0.0379 (11) | 0.0459 (12) | 0.0015 (8) | 0.0161 (9) | 0.0061 (9) |
C17 | 0.0392 (11) | 0.0400 (13) | 0.0526 (13) | 0.0036 (9) | 0.0206 (10) | 0.0063 (10) |
C18 | 0.0472 (13) | 0.0501 (13) | 0.0550 (14) | 0.0061 (11) | 0.0242 (11) | −0.0012 (11) |
C19 | 0.0447 (12) | 0.0661 (16) | 0.0488 (13) | 0.0071 (12) | 0.0217 (11) | 0.0046 (12) |
C20 | 0.0476 (13) | 0.0612 (15) | 0.0501 (13) | 0.0048 (12) | 0.0221 (11) | 0.0162 (12) |
C21 | 0.0369 (11) | 0.0418 (12) | 0.0544 (13) | 0.0019 (10) | 0.0182 (10) | 0.0107 (11) |
C22 | 0.0595 (15) | 0.087 (2) | 0.097 (2) | −0.0058 (16) | 0.0485 (16) | −0.0176 (18) |
O1—C21 | 1.353 (2) | C9—H91 | 1.002 |
O1—H11 | 0.867 | C10—C11 | 1.392 (3) |
O2—C13 | 1.376 (3) | C10—C15 | 1.378 (3) |
O2—C22 | 1.440 (3) | C11—C12 | 1.374 (3) |
N1—C1 | 1.411 (3) | C11—H111 | 0.975 |
N1—C7 | 1.297 (3) | C12—C13 | 1.389 (3) |
N2—C2 | 1.405 (3) | C12—H121 | 0.964 |
N2—C9 | 1.470 (3) | C13—C14 | 1.371 (3) |
N2—H21 | 0.877 | C14—C15 | 1.397 (3) |
C1—C2 | 1.409 (3) | C14—H141 | 0.972 |
C1—C6 | 1.393 (3) | C15—H151 | 0.986 |
C2—C3 | 1.395 (3) | C16—C17 | 1.405 (3) |
C3—C4 | 1.391 (3) | C16—C21 | 1.409 (3) |
C3—H31 | 0.960 | C17—C18 | 1.375 (3) |
C4—C5 | 1.384 (4) | C17—H171 | 0.976 |
C4—H41 | 0.956 | C18—C19 | 1.381 (3) |
C5—C6 | 1.370 (3) | C18—H181 | 0.968 |
C5—H51 | 0.960 | C19—C20 | 1.371 (3) |
C6—H61 | 0.970 | C19—H191 | 0.993 |
C7—C8 | 1.505 (3) | C20—C21 | 1.396 (3) |
C7—C16 | 1.463 (3) | C20—H201 | 0.953 |
C8—C9 | 1.533 (3) | C22—H222 | 0.997 |
C8—H82 | 0.999 | C22—H223 | 0.985 |
C8—H81 | 0.987 | C22—H221 | 0.995 |
C9—C10 | 1.515 (3) | ||
C21—O1—H11 | 108.1 | C11—C10—C15 | 117.3 (2) |
C13—O2—C22 | 116.84 (19) | C10—C11—C12 | 122.0 (2) |
C1—N1—C7 | 120.97 (18) | C10—C11—H111 | 117.5 |
C2—N2—C9 | 121.12 (16) | C12—C11—H111 | 120.5 |
C2—N2—H21 | 117.0 | C11—C12—C13 | 119.7 (2) |
C9—N2—H21 | 117.0 | C11—C12—H121 | 120.9 |
N1—C1—C2 | 122.16 (19) | C13—C12—H121 | 119.3 |
N1—C1—C6 | 117.7 (2) | C12—C13—O2 | 115.8 (2) |
C2—C1—C6 | 119.7 (2) | C12—C13—C14 | 119.6 (2) |
C1—C2—N2 | 120.6 (2) | O2—C13—C14 | 124.6 (2) |
C1—C2—C3 | 118.5 (2) | C13—C14—C15 | 119.8 (2) |
N2—C2—C3 | 120.6 (2) | C13—C14—H141 | 120.1 |
C2—C3—C4 | 120.4 (3) | C15—C14—H141 | 120.1 |
C2—C3—H31 | 118.6 | C14—C15—C10 | 121.6 (2) |
C4—C3—H31 | 120.9 | C14—C15—H151 | 119.3 |
C3—C4—C5 | 120.6 (2) | C10—C15—H151 | 119.2 |
C3—C4—H41 | 119.9 | C7—C16—C17 | 122.07 (19) |
C5—C4—H41 | 119.5 | C7—C16—C21 | 120.80 (19) |
C4—C5—C6 | 119.4 (3) | C17—C16—C21 | 117.1 (2) |
C4—C5—H51 | 120.6 | C16—C17—C18 | 122.2 (2) |
C6—C5—H51 | 120.0 | C16—C17—H171 | 118.5 |
C1—C6—C5 | 121.3 (3) | C18—C17—H171 | 119.4 |
C1—C6—H61 | 118.5 | C17—C18—C19 | 119.7 (2) |
C5—C6—H61 | 120.2 | C17—C18—H181 | 120.2 |
N1—C7—C8 | 119.71 (19) | C19—C18—H181 | 120.2 |
N1—C7—C16 | 118.03 (19) | C18—C19—C20 | 120.0 (2) |
C8—C7—C16 | 122.26 (18) | C18—C19—H191 | 120.2 |
C7—C8—C9 | 112.03 (16) | C20—C19—H191 | 119.7 |
C7—C8—H82 | 108.3 | C19—C20—C21 | 121.0 (2) |
C9—C8—H82 | 107.3 | C19—C20—H201 | 121.4 |
C7—C8—H81 | 110.6 | C21—C20—H201 | 117.5 |
C9—C8—H81 | 108.3 | C16—C21—C20 | 120.0 (2) |
H82—C8—H81 | 110.3 | C16—C21—O1 | 122.1 (2) |
C8—C9—N2 | 109.30 (17) | C20—C21—O1 | 117.9 (2) |
C8—C9—C10 | 111.76 (17) | O2—C22—H222 | 105.8 |
N2—C9—C10 | 111.18 (16) | O2—C22—H223 | 107.2 |
C8—C9—H91 | 107.4 | H222—C22—H223 | 112.5 |
N2—C9—H91 | 109.2 | O2—C22—H221 | 109.1 |
C10—C9—H91 | 107.8 | H222—C22—H221 | 111.4 |
C9—C10—C11 | 118.86 (19) | H223—C22—H221 | 110.6 |
C9—C10—C15 | 123.85 (19) |
Experimental details
Crystal data | |
Chemical formula | C22H20N2O2 |
Mr | 344.41 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 223 |
a, b, c (Å) | 27.5064 (5), 7.3811 (2), 19.5038 (4) |
β (°) | 117.699 (2) |
V (Å3) | 3506.02 (15) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.30 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 3σ(I)] reflections | 19187, 2507, 2836 |
Rint | 0.06 |
(sin θ/λ)max (Å−1) | 0.683 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.065, 1.04 |
No. of reflections | 2507 |
No. of parameters | 235 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.25 |
Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ORTEP-3 (Farrugia, 1997).
Acknowledgements
The authors thank the Spectropôle Service of the Faculty of Sciences and Techniques of Saint Jérôme (France) for the use of the diffractometer.
References
Albright, J. D., Feich, M. F., Santos, E. G. D., Dusza, J. P., Sum, F.-W., Venkatesan, A. M., Coupet, J., Chan, P. S., Ru, X., Mazandarani, H. & Bailey, T. (1998). J. Med. Chem. 41, 2442–2444. Web of Science CrossRef CAS PubMed Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gringauz, A. (1999). Introduction to Medicinal Chemistry, pp. 578–580. New York: Wiley-VCH. Google Scholar
MacDonald, R. L. (2002). Benzodiazepines - Mechanisms of Action. In Antiepileptic Drugs, 5th ed., edited by R. H. Levy, R. H. Mattson, B. S. Meldrum & E. Perucca, pp. 179–186. Philadelphia: Lippincott Williams and Wilkins. Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Rahbaek, L., Breinholt, J., Frisvad, J. C. & Christophersen, C. (1999). J. Org. Chem. 64, 1689–1692. Web of Science CrossRef PubMed Google Scholar
Ravichandran, K., Sakthivel, P., Ponnuswamy, S., Ramesh, P. & Ponnuswamy, M. N. (2009a). Acta Cryst. E65, o2361. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ravichandran, K., Sakthivel, P., Ponnuswamy, S., Ramesh, P. & Ponnuswamy, M. N. (2009b). Acta Cryst. E65, o2362. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ravichandran, K., Sakthivel, P., Ponnuswamy, S., Shalini, M. & Ponnuswamy, M. N. (2009c). Acta Cryst. E65, o2551–o2552. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ravichandran, K., Sathiyaraj, K., Ilango, S. S., Ponnuswamy, S. & Ponnuswamy, M. N. (2009d). Acta Cryst. E65, o2363–o2364. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watkin, D. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocyclic scaffolds containing nitrogen atoms have received great attention in organic and medicinal chemistry because of their broad range of beneficial biological properties. These heterocyclic compounds such as benzodiazepines exhibit bioactive profile including anticonvulsant (MacDonald, 2002), hypnotic (Gringauz, 1999) and vasopressin antagonists (Albright et al., 1998) activities. They are also used for treatment of gastrointestinal and central nervous system (CNS) disorder (Rahbaek et al., 1999). As part of continuing work on heterocyclic compounds biologically active, we have synthesized new benzodiazepine derivative in order to explore the effects of substituents on activity and scaffold conformation of this compound class. In this paper, we present molecular structure of the title compound. The molecular structure of title compound is shown in Fig. 1. The benzodiazepine ring system adopts a distorted boat conformation as shown in the recent studies related to benzodiazepine derivatives (Ravichandran et al., 2009a,b,c,d). The puckering parameters (Cremer & Pople, 1975) for this eleven-membered benzodiazepine ring system are: Q2 = 1.087 (3) Å,Q3 = 0.654 (3) Å,ϕ2 = 320.74 (4)° and ϕ3 = 26.7 (2)°. The benzene ring of this system forms dihedral angles of 89.69 (12)° and 48.82 (12)° with the phenyl rings of phenol and methoxy-phenyl fragments respectively which make them dihedral angle of 49.61 (11)°. Furthermore, there is in this structure the presence of O—H···N intra-molecular hydrogen bond, which generates an S (6) graph set motif (Bernstein et al., 1995).