organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o87-o88

2-[2-(4-Methoxyphenyl)-2,3-di­hydro-1H-1,5-benzodiazepin-4-yl]phenol

aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire de Chimie Organique, UFR SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire
*Correspondence e-mail: bibilamayayabisseyou@yahoo.fr

(Received 25 November 2009; accepted 4 December 2009; online 9 December 2009)

In the structure of title compound, C22H20O2N2, the 11-membered benzodiazepine ring system adopts a distorted boat conformation. The benzene ring of this system forms dihedral angles of 89.69 (12) and 48.82 (12)° with those of the phenol and methoxy­phenyl substituents, respectively. The dihedral angle between the benzene rings is 49.61 (11)°. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring.

Related literature

For the biological activity of heterocyclic scaffolds containing nitro­gen atoms, see: MacDonald (2002[MacDonald, R. L. (2002). Benzodiazepines - Mechanisms of Action. In Antiepileptic Drugs, 5th ed., edited by R. H. Levy, R. H. Mattson, B. S. Meldrum & E. Perucca, pp. 179-186. Philadelphia: Lippincott Williams and Wilkins.]); Gringauz (1999[Gringauz, A. (1999). Introduction to Medicinal Chemistry, pp. 578-580. New York: Wiley-VCH.]); Albright et al. (1998[Albright, J. D., Feich, M. F., Santos, E. G. D., Dusza, J. P., Sum, F.-W., Venkatesan, A. M., Coupet, J., Chan, P. S., Ru, X., Mazandarani, H. & Bailey, T. (1998). J. Med. Chem. 41, 2442-2444.]); Rahbaek et al. (1999[Rahbaek, L., Breinholt, J., Frisvad, J. C. & Christophersen, C. (1999). J. Org. Chem. 64, 1689-1692.]). For related structures, see: Ravichandran et al. (2009a[Ravichandran, K., Sakthivel, P., Ponnuswamy, S., Ramesh, P. & Ponnuswamy, M. N. (2009a). Acta Cryst. E65, o2361.],b[Ravichandran, K., Sakthivel, P., Ponnuswamy, S., Ramesh, P. & Ponnuswamy, M. N. (2009b). Acta Cryst. E65, o2362.],c[Ravichandran, K., Sakthivel, P., Ponnuswamy, S., Shalini, M. & Ponnuswamy, M. N. (2009c). Acta Cryst. E65, o2551-o2552.],d[Ravichandran, K., Sathiyaraj, K., Ilango, S. S., Ponnuswamy, S. & Ponnuswamy, M. N. (2009d). Acta Cryst. E65, o2363-o2364.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the weighting scheme, see: Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O2

  • Mr = 344.41

  • Monoclinic, C 2/c

  • a = 27.5064 (5) Å

  • b = 7.3811 (2) Å

  • c = 19.5038 (4) Å

  • β = 117.699 (2)°

  • V = 3506.02 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 223 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 19187 measured reflections

  • 2507 independent reflections

  • 2836 reflections with I > 3σ(I)

  • Rint = 0.06

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.065

  • S = 1.04

  • 2507 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯N1 0.87 1.74 2.523 (3) 148

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Heterocyclic scaffolds containing nitrogen atoms have received great attention in organic and medicinal chemistry because of their broad range of beneficial biological properties. These heterocyclic compounds such as benzodiazepines exhibit bioactive profile including anticonvulsant (MacDonald, 2002), hypnotic (Gringauz, 1999) and vasopressin antagonists (Albright et al., 1998) activities. They are also used for treatment of gastrointestinal and central nervous system (CNS) disorder (Rahbaek et al., 1999). As part of continuing work on heterocyclic compounds biologically active, we have synthesized new benzodiazepine derivative in order to explore the effects of substituents on activity and scaffold conformation of this compound class. In this paper, we present molecular structure of the title compound. The molecular structure of title compound is shown in Fig. 1. The benzodiazepine ring system adopts a distorted boat conformation as shown in the recent studies related to benzodiazepine derivatives (Ravichandran et al., 2009a,b,c,d). The puckering parameters (Cremer & Pople, 1975) for this eleven-membered benzodiazepine ring system are: Q2 = 1.087 (3) Å,Q3 = 0.654 (3) Å,ϕ2 = 320.74 (4)° and ϕ3 = 26.7 (2)°. The benzene ring of this system forms dihedral angles of 89.69 (12)° and 48.82 (12)° with the phenyl rings of phenol and methoxy-phenyl fragments respectively which make them dihedral angle of 49.61 (11)°. Furthermore, there is in this structure the presence of O—H···N intra-molecular hydrogen bond, which generates an S (6) graph set motif (Bernstein et al., 1995).

Related literature top

For the biological activity of heterocyclic scaffolds containing nitrogen atoms, see: MacDonald (2002); Gringauz (1999); Albright et al. (1998); Rahbaek et al. (1999). For related structures, see: Ravichandran et al. (2009a,b,c,d). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the weighting scheme, see: Prince (1982); Watkin (1994).

Experimental top

To a solution of 1-(2-hydroxyphenyl)-3-(p-tolyl) propenone (1.3 g, 5.4 mmol) and 1, 2-diaminobenzene in anhydrous ethanol (20 ml), was added triethylamine (6 ml, 32.4 mmol). The reaction mixture was stirred under shelter from the light for 24 h. The resulting mixture was cooled at room temperature then kept in the freezer all night long. The precipitate was then filtered and purified by chromatography silica gel. Elution solvent: hexane/ethyl acetate (90/10). We obtained yellow single crystals of title compound with a yield of 56% (m.p.: 413–415 K; Rf: 1/2, hexane/ethyl acetate: 80/20).

Refinement top

The H atoms were all located in a difference of Fourier map. They were all initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.95–0.97 Å, O—H = 0.87 Å, N—H = 0.88 Å and Uiso(H)in the range 1.2–1.7 times Ueq of the parent atom), after which their positions were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound and the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
2-[2-(4-Methoxyphenyl)-2,3-dihydro-1H-1,5-benzodiazepin-4-yl]phenol top
Crystal data top
C22H20N2O2F(000) = 1456
Mr = 344.41Dx = 1.305 Mg m3
Monoclinic, C2/cMelting point = 413–415 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 27.5064 (5) ÅCell parameters from 19187 reflections
b = 7.3811 (2) Åθ = 0–0°
c = 19.5038 (4) ŵ = 0.08 mm1
β = 117.699 (2)°T = 223 K
V = 3506.02 (15) Å3Block, yellow
Z = 80.30 × 0.20 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.06
Graphite monochromatorθmax = 29.1°, θmin = 1.7°
ϕ and ω scansh = 3732
19187 measured reflectionsk = 1010
2507 independent reflectionsl = 2525
2836 reflections with I > 3σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.065 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 76.3 80.0 28.8 -10.0 -11.5
S = 1.04(Δ/σ)max = 0.000374
2507 reflectionsΔρmax = 0.25 e Å3
235 parametersΔρmin = 0.25 e Å3
0 restraints
Crystal data top
C22H20N2O2V = 3506.02 (15) Å3
Mr = 344.41Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.5064 (5) ŵ = 0.08 mm1
b = 7.3811 (2) ÅT = 223 K
c = 19.5038 (4) Å0.30 × 0.20 × 0.15 mm
β = 117.699 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2836 reflections with I > 3σ(I)
19187 measured reflectionsRint = 0.06
2507 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
2507 reflectionsΔρmin = 0.25 e Å3
235 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93812 (7)0.1834 (2)0.28604 (9)0.0613
O20.74005 (6)0.9744 (2)0.19252 (11)0.0715
N10.92187 (7)0.2773 (2)0.15267 (10)0.0441
N20.82826 (7)0.4219 (3)0.02002 (10)0.0518
C10.90766 (9)0.2197 (3)0.07668 (13)0.0465
C20.86133 (9)0.2877 (3)0.01157 (13)0.0481
C30.84587 (10)0.2063 (4)0.06017 (14)0.0600
C40.87638 (12)0.0637 (4)0.06710 (17)0.0694
C50.92265 (12)0.0009 (4)0.00312 (18)0.0690
C60.93752 (10)0.0773 (3)0.06788 (16)0.0572
C70.92184 (7)0.4477 (3)0.16870 (12)0.0385
C80.91134 (8)0.5878 (3)0.10725 (12)0.0404
C90.85020 (8)0.6032 (3)0.04950 (12)0.0435
C100.81802 (8)0.6940 (3)0.08532 (11)0.0405
C110.82500 (9)0.8789 (3)0.10081 (14)0.0547
C120.79940 (9)0.9683 (3)0.13693 (15)0.0584
C130.76448 (8)0.8738 (3)0.15756 (14)0.0526
C140.75569 (9)0.6925 (3)0.14123 (13)0.0509
C150.78302 (8)0.6032 (3)0.10597 (12)0.0475
C160.93285 (8)0.4968 (3)0.24729 (12)0.0384
C170.93531 (8)0.6780 (3)0.27066 (12)0.0442
C180.94419 (8)0.7245 (3)0.34386 (13)0.0506
C190.95159 (9)0.5901 (3)0.39714 (13)0.0532
C200.95014 (9)0.4115 (3)0.37696 (13)0.0532
C210.94043 (8)0.3622 (3)0.30257 (13)0.0455
C220.69528 (10)0.8907 (4)0.19955 (17)0.0766
H820.93090.54950.07750.0489*
H810.92440.70790.13090.0491*
H1910.95680.62220.44950.0668*
H910.84710.68090.00550.0540*
H1110.84890.94420.08490.0673*
H1410.73080.62580.15470.0624*
H1510.77630.47300.09420.0604*
H2010.95650.31670.41330.0656*
H510.94450.09430.00830.0953*
H1710.93050.77350.23340.0558*
H1810.94600.85070.35830.0644*
H210.79270.41330.00980.0665*
H410.86600.01080.11670.0911*
H1210.80621.09510.14970.0723*
H310.81350.24960.10430.0789*
H610.96930.03250.11340.0794*
H2220.68050.98580.22100.1264*
H2230.66830.85140.14730.1269*
H2210.70940.78490.23500.1273*
H110.93220.17250.23850.0949*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0752 (11)0.0399 (10)0.0615 (10)0.0001 (8)0.0257 (9)0.0135 (8)
O20.0518 (10)0.0654 (12)0.1058 (14)0.0043 (9)0.0437 (10)0.0231 (10)
N10.0415 (10)0.0383 (10)0.0543 (11)0.0021 (8)0.0238 (9)0.0006 (8)
N20.0363 (9)0.0547 (12)0.0585 (12)0.0069 (9)0.0171 (9)0.0094 (10)
C10.0465 (12)0.0374 (12)0.0636 (15)0.0115 (10)0.0324 (12)0.0060 (11)
C20.0481 (13)0.0476 (13)0.0560 (14)0.0169 (11)0.0305 (11)0.0092 (11)
C30.0607 (15)0.0623 (16)0.0641 (16)0.0240 (13)0.0348 (13)0.0153 (13)
C40.0840 (19)0.0658 (18)0.0814 (19)0.0386 (16)0.0579 (17)0.0348 (16)
C50.0725 (18)0.0542 (16)0.100 (2)0.0212 (14)0.0570 (18)0.0257 (16)
C60.0564 (13)0.0436 (13)0.0811 (17)0.0112 (12)0.0401 (13)0.0116 (13)
C70.0296 (10)0.0354 (11)0.0507 (12)0.0019 (8)0.0187 (9)0.0036 (9)
C80.0369 (10)0.0366 (11)0.0494 (12)0.0043 (9)0.0216 (9)0.0028 (10)
C90.0388 (11)0.0449 (13)0.0442 (12)0.0031 (10)0.0171 (9)0.0070 (10)
C100.0321 (10)0.0391 (12)0.0441 (12)0.0001 (9)0.0123 (9)0.0076 (9)
C110.0426 (12)0.0419 (14)0.0816 (17)0.0022 (10)0.0307 (12)0.0095 (12)
C120.0417 (12)0.0384 (13)0.0939 (19)0.0027 (10)0.0305 (13)0.0044 (13)
C130.0370 (12)0.0511 (14)0.0664 (15)0.0017 (11)0.0211 (11)0.0061 (12)
C140.0436 (12)0.0480 (14)0.0668 (15)0.0064 (11)0.0304 (11)0.0008 (12)
C150.0457 (12)0.0391 (12)0.0596 (14)0.0059 (10)0.0262 (11)0.0006 (11)
C160.0296 (10)0.0379 (11)0.0459 (12)0.0015 (8)0.0161 (9)0.0061 (9)
C170.0392 (11)0.0400 (13)0.0526 (13)0.0036 (9)0.0206 (10)0.0063 (10)
C180.0472 (13)0.0501 (13)0.0550 (14)0.0061 (11)0.0242 (11)0.0012 (11)
C190.0447 (12)0.0661 (16)0.0488 (13)0.0071 (12)0.0217 (11)0.0046 (12)
C200.0476 (13)0.0612 (15)0.0501 (13)0.0048 (12)0.0221 (11)0.0162 (12)
C210.0369 (11)0.0418 (12)0.0544 (13)0.0019 (10)0.0182 (10)0.0107 (11)
C220.0595 (15)0.087 (2)0.097 (2)0.0058 (16)0.0485 (16)0.0176 (18)
Geometric parameters (Å, º) top
O1—C211.353 (2)C9—H911.002
O1—H110.867C10—C111.392 (3)
O2—C131.376 (3)C10—C151.378 (3)
O2—C221.440 (3)C11—C121.374 (3)
N1—C11.411 (3)C11—H1110.975
N1—C71.297 (3)C12—C131.389 (3)
N2—C21.405 (3)C12—H1210.964
N2—C91.470 (3)C13—C141.371 (3)
N2—H210.877C14—C151.397 (3)
C1—C21.409 (3)C14—H1410.972
C1—C61.393 (3)C15—H1510.986
C2—C31.395 (3)C16—C171.405 (3)
C3—C41.391 (3)C16—C211.409 (3)
C3—H310.960C17—C181.375 (3)
C4—C51.384 (4)C17—H1710.976
C4—H410.956C18—C191.381 (3)
C5—C61.370 (3)C18—H1810.968
C5—H510.960C19—C201.371 (3)
C6—H610.970C19—H1910.993
C7—C81.505 (3)C20—C211.396 (3)
C7—C161.463 (3)C20—H2010.953
C8—C91.533 (3)C22—H2220.997
C8—H820.999C22—H2230.985
C8—H810.987C22—H2210.995
C9—C101.515 (3)
C21—O1—H11108.1C11—C10—C15117.3 (2)
C13—O2—C22116.84 (19)C10—C11—C12122.0 (2)
C1—N1—C7120.97 (18)C10—C11—H111117.5
C2—N2—C9121.12 (16)C12—C11—H111120.5
C2—N2—H21117.0C11—C12—C13119.7 (2)
C9—N2—H21117.0C11—C12—H121120.9
N1—C1—C2122.16 (19)C13—C12—H121119.3
N1—C1—C6117.7 (2)C12—C13—O2115.8 (2)
C2—C1—C6119.7 (2)C12—C13—C14119.6 (2)
C1—C2—N2120.6 (2)O2—C13—C14124.6 (2)
C1—C2—C3118.5 (2)C13—C14—C15119.8 (2)
N2—C2—C3120.6 (2)C13—C14—H141120.1
C2—C3—C4120.4 (3)C15—C14—H141120.1
C2—C3—H31118.6C14—C15—C10121.6 (2)
C4—C3—H31120.9C14—C15—H151119.3
C3—C4—C5120.6 (2)C10—C15—H151119.2
C3—C4—H41119.9C7—C16—C17122.07 (19)
C5—C4—H41119.5C7—C16—C21120.80 (19)
C4—C5—C6119.4 (3)C17—C16—C21117.1 (2)
C4—C5—H51120.6C16—C17—C18122.2 (2)
C6—C5—H51120.0C16—C17—H171118.5
C1—C6—C5121.3 (3)C18—C17—H171119.4
C1—C6—H61118.5C17—C18—C19119.7 (2)
C5—C6—H61120.2C17—C18—H181120.2
N1—C7—C8119.71 (19)C19—C18—H181120.2
N1—C7—C16118.03 (19)C18—C19—C20120.0 (2)
C8—C7—C16122.26 (18)C18—C19—H191120.2
C7—C8—C9112.03 (16)C20—C19—H191119.7
C7—C8—H82108.3C19—C20—C21121.0 (2)
C9—C8—H82107.3C19—C20—H201121.4
C7—C8—H81110.6C21—C20—H201117.5
C9—C8—H81108.3C16—C21—C20120.0 (2)
H82—C8—H81110.3C16—C21—O1122.1 (2)
C8—C9—N2109.30 (17)C20—C21—O1117.9 (2)
C8—C9—C10111.76 (17)O2—C22—H222105.8
N2—C9—C10111.18 (16)O2—C22—H223107.2
C8—C9—H91107.4H222—C22—H223112.5
N2—C9—H91109.2O2—C22—H221109.1
C10—C9—H91107.8H222—C22—H221111.4
C9—C10—C11118.86 (19)H223—C22—H221110.6
C9—C10—C15123.85 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···N10.871.742.523 (3)148

Experimental details

Crystal data
Chemical formulaC22H20N2O2
Mr344.41
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)27.5064 (5), 7.3811 (2), 19.5038 (4)
β (°) 117.699 (2)
V3)3506.02 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 3σ(I)] reflections
19187, 2507, 2836
Rint0.06
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.065, 1.04
No. of reflections2507
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···N10.871.742.523 (3)148
 

Acknowledgements

The authors thank the Spectropôle Service of the Faculty of Sciences and Techniques of Saint Jérôme (France) for the use of the diffractometer.

References

First citationAlbright, J. D., Feich, M. F., Santos, E. G. D., Dusza, J. P., Sum, F.-W., Venkatesan, A. M., Coupet, J., Chan, P. S., Ru, X., Mazandarani, H. & Bailey, T. (1998). J. Med. Chem. 41, 2442–2444.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGringauz, A. (1999). Introduction to Medicinal Chemistry, pp. 578–580. New York: Wiley-VCH.  Google Scholar
First citationMacDonald, R. L. (2002). Benzodiazepines - Mechanisms of Action. In Antiepileptic Drugs, 5th ed., edited by R. H. Levy, R. H. Mattson, B. S. Meldrum & E. Perucca, pp. 179–186. Philadelphia: Lippincott Williams and Wilkins.  Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationRahbaek, L., Breinholt, J., Frisvad, J. C. & Christophersen, C. (1999). J. Org. Chem. 64, 1689–1692.  Web of Science CrossRef PubMed Google Scholar
First citationRavichandran, K., Sakthivel, P., Ponnuswamy, S., Ramesh, P. & Ponnuswamy, M. N. (2009a). Acta Cryst. E65, o2361.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavichandran, K., Sakthivel, P., Ponnuswamy, S., Ramesh, P. & Ponnuswamy, M. N. (2009b). Acta Cryst. E65, o2362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavichandran, K., Sakthivel, P., Ponnuswamy, S., Shalini, M. & Ponnuswamy, M. N. (2009c). Acta Cryst. E65, o2551–o2552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavichandran, K., Sathiyaraj, K., Ilango, S. S., Ponnuswamy, S. & Ponnuswamy, M. N. (2009d). Acta Cryst. E65, o2363–o2364.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o87-o88
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds