organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(phenyl­sulfon­yl)succinamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 11 December 2009; accepted 11 December 2009; online 16 December 2009)

In the crystal structure of the title compound, C16H16N2O6S2, the conformation of the N—C bonds in the C—SO2—NH—C(O)—C segments have gauche torsions with respect to the S=O bonds, while the conformations of the N—H and C=O bonds in the amide fragments are trans to each other and the amide O atom is anti to the H atoms attached to the adjacent C atom. The mol­ecule is bent at the S atom with a C—SO2—NH—C(O) torsion angle of 65.2 (2)°. The molecule lies about a centre of inversion. The dihedral angle between the benzene ring and the SO2—NH—C(O)—C2 segment in the two halves of the mol­ecule is 77.4 (1)°. The structure exhibits both intra­molecular and inter­molecular hydrogen bonds. A series of N—H⋯O(S) hydrogen bonds links the mol­ecules into infinite chains.

Related literature

For our studies of the effect of ring and side-chain substituents on the solid state structures of N-aromatic sulfonamides, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o2516.],b[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2750.]); Suchetan et al. (2009[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156.])

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O6S2

  • Mr = 396.43

  • Monoclinic, P 21 /c

  • a = 8.7800 (5) Å

  • b = 5.1590 (3) Å

  • c = 19.622 (1) Å

  • β = 101.255 (5)°

  • V = 871.71 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 299 K

  • 0.32 × 0.20 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.898, Tmax = 0.973

  • 3275 measured reflections

  • 1751 independent reflections

  • 1427 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.080

  • S = 1.05

  • 1751 reflections

  • 121 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.80 (2) 2.39 (2) 3.042 (2) 139 (2)
N1—H1N⋯O1ii 0.80 (2) 2.46 (2) 3.093 (2) 137 (2)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of a study of the effect of ring and the side chain substituents on the solid state structures of N-aromatic sulfonamides (Gowda et al., 2009a,b; Suchetan et al., 2009), in the present work, the structure of N,N-(diphenylsulfonyl)succinamide has been determined (Fig.1).

The conformation of the N—C bonds in both the C—SO2—NH—C(O)—C segments have gauche torsions with respect to the SO bonds, while the conformations of N—H and C=O bonds in the amide fragments are trans to each other and the amide O atoms are anti to the H atoms attached to the adjacent C atoms. The molecule is bent at the S atoms with the C—SO2—NH—C(O) torsion angle of 65.2 (2)°. The dihedral angle between the benzene ring and the SO2—NH—C(O)—C2 segment in the two halves of the molecule is 77.4 (1)°. The structure exhibits both the intramolecular and intermolecular hydrogen bonds. The series of N—H···O(S) hydrogen bonds (Table 1) link the molecules into infinite chains (Fig. 2).

Related literature top

For our study of the effect of ring and side-chain substituents on the solid state structures of N-aromatic sulfonamides, see: Gowda et al. (2009a,b); Suchetan et al. (2009)

Experimental top

N,N-(Diphenylsulfonyl)succinamide was prepared by refluxing a mixture of succinic anhydride (0.01 mol) with benzenesulfonamide (0.02 mol) and POCl3 for 1 hr on a water bath. The reaction mixture was allowed to cool and added ether to it. The solid product obtained was filtered, washed thoroughly with ether and hot alcohol. The compound was recrystallized to the constant melting point (235–237° C).

Rod like single crystals used in the X-ray diffraction studies were obtained from a slow evaporation of a solution of the compound in methyl ethyl ketone at room temperature.

Refinement top

The H atom of the NH group was located in difference map and later restrained to N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93—0.97 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level. Symmetry code for unlabelled part of the molecule: -x, -y, -z.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N,N'-Bis(phenylsulfonyl)succinamide top
Crystal data top
C16H16N2O6S2F(000) = 412
Mr = 396.43Dx = 1.510 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2246 reflections
a = 8.7800 (5) Åθ = 2.8–27.8°
b = 5.1590 (3) ŵ = 0.34 mm1
c = 19.622 (1) ÅT = 299 K
β = 101.255 (5)°Rod, colourless
V = 871.71 (8) Å30.32 × 0.20 × 0.08 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1751 independent reflections
Radiation source: fine-focus sealed tube1427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 109
Tmin = 0.898, Tmax = 0.973k = 46
3275 measured reflectionsl = 1924
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.3671P]
where P = (Fo2 + 2Fc2)/3
1751 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C16H16N2O6S2V = 871.71 (8) Å3
Mr = 396.43Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.7800 (5) ŵ = 0.34 mm1
b = 5.1590 (3) ÅT = 299 K
c = 19.622 (1) Å0.32 × 0.20 × 0.08 mm
β = 101.255 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1751 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1427 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.973Rint = 0.015
3275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.29 e Å3
1751 reflectionsΔρmin = 0.29 e Å3
121 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31653 (19)0.7383 (3)0.31933 (9)0.0331 (4)
C20.3666 (2)0.9450 (4)0.28431 (11)0.0470 (5)
H20.44291.05710.30700.056*
C30.3010 (3)0.9812 (5)0.21518 (12)0.0578 (6)
H30.33341.11850.19080.069*
C40.1877 (3)0.8148 (5)0.18224 (11)0.0604 (6)
H40.14400.84010.13560.072*
C50.1385 (3)0.6118 (5)0.21760 (11)0.0588 (6)
H50.06130.50130.19490.071*
C60.2028 (2)0.5703 (4)0.28671 (10)0.0437 (5)
H60.17030.43230.31080.052*
C70.1467 (2)0.8280 (3)0.45506 (8)0.0336 (4)
C80.0833 (2)1.0277 (4)0.49737 (9)0.0381 (4)
H8A0.08891.19680.47640.046*
H8B0.14701.03240.54370.046*
O10.55295 (14)0.8013 (3)0.42093 (7)0.0479 (4)
O20.38326 (17)0.4210 (2)0.42254 (7)0.0486 (4)
O30.07266 (16)0.6510 (3)0.42511 (7)0.0526 (4)
S10.40186 (5)0.68656 (9)0.40706 (2)0.03488 (15)
N10.30125 (18)0.8647 (3)0.45214 (8)0.0380 (4)
H1N0.343 (2)0.998 (3)0.4659 (11)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0342 (9)0.0330 (9)0.0317 (8)0.0039 (7)0.0057 (7)0.0025 (7)
C20.0467 (11)0.0420 (11)0.0524 (12)0.0011 (9)0.0102 (9)0.0036 (9)
C30.0679 (14)0.0579 (14)0.0506 (12)0.0151 (12)0.0187 (11)0.0188 (11)
C40.0701 (15)0.0726 (16)0.0348 (10)0.0272 (13)0.0015 (10)0.0049 (11)
C50.0599 (13)0.0637 (14)0.0441 (11)0.0025 (11)0.0112 (10)0.0104 (11)
C60.0460 (11)0.0411 (11)0.0413 (10)0.0029 (9)0.0019 (8)0.0039 (8)
C70.0380 (9)0.0341 (9)0.0287 (8)0.0058 (8)0.0061 (7)0.0016 (7)
C80.0380 (10)0.0381 (10)0.0383 (9)0.0070 (8)0.0076 (8)0.0082 (8)
O10.0324 (7)0.0617 (9)0.0473 (8)0.0024 (6)0.0023 (6)0.0128 (7)
O20.0680 (9)0.0346 (7)0.0405 (7)0.0043 (7)0.0036 (6)0.0010 (6)
O30.0482 (8)0.0533 (9)0.0593 (9)0.0200 (7)0.0177 (7)0.0259 (7)
S10.0359 (2)0.0342 (3)0.0328 (2)0.00061 (19)0.00258 (17)0.00498 (18)
N10.0367 (8)0.0361 (9)0.0413 (8)0.0091 (7)0.0084 (6)0.0141 (7)
Geometric parameters (Å, º) top
C1—C61.381 (3)C6—H60.9300
C1—C21.386 (3)C7—O31.205 (2)
C1—S11.7586 (17)C7—N11.382 (2)
C2—C31.379 (3)C7—C81.497 (2)
C2—H20.9300C8—C8i1.514 (3)
C3—C41.376 (3)C8—H8A0.9700
C3—H30.9300C8—H8B0.9700
C4—C51.372 (3)O1—S11.4294 (13)
C4—H40.9300O2—S11.4196 (14)
C5—C61.380 (3)S1—N11.6471 (16)
C5—H50.9300N1—H1N0.800 (15)
C6—C1—C2121.56 (17)O3—C7—N1121.63 (16)
C6—C1—S1119.32 (14)O3—C7—C8124.62 (16)
C2—C1—S1119.11 (14)N1—C7—C8113.75 (14)
C3—C2—C1118.7 (2)C7—C8—C8i112.14 (18)
C3—C2—H2120.6C7—C8—H8A109.2
C1—C2—H2120.6C8i—C8—H8A109.2
C4—C3—C2120.1 (2)C7—C8—H8B109.2
C4—C3—H3119.9C8i—C8—H8B109.2
C2—C3—H3119.9H8A—C8—H8B107.9
C5—C4—C3120.6 (2)O2—S1—O1120.02 (9)
C5—C4—H4119.7O2—S1—N1109.12 (8)
C3—C4—H4119.7O1—S1—N1103.98 (8)
C4—C5—C6120.4 (2)O2—S1—C1108.12 (8)
C4—C5—H5119.8O1—S1—C1109.01 (8)
C6—C5—H5119.8N1—S1—C1105.68 (8)
C5—C6—C1118.57 (19)C7—N1—S1125.40 (12)
C5—C6—H6120.7C7—N1—H1N119.9 (15)
C1—C6—H6120.7S1—N1—H1N113.4 (15)
C6—C1—C2—C30.3 (3)C2—C1—S1—O2155.96 (15)
S1—C1—C2—C3178.83 (16)C6—C1—S1—O1155.23 (15)
C1—C2—C3—C40.3 (3)C2—C1—S1—O123.93 (17)
C2—C3—C4—C50.1 (4)C6—C1—S1—N193.53 (16)
C3—C4—C5—C60.5 (4)C2—C1—S1—N187.30 (16)
C4—C5—C6—C10.4 (3)O3—C7—N1—S12.2 (3)
C2—C1—C6—C50.0 (3)C8—C7—N1—S1177.07 (13)
S1—C1—C6—C5179.17 (16)O2—S1—N1—C750.87 (18)
O3—C7—C8—C8i3.9 (3)O1—S1—N1—C7179.93 (15)
N1—C7—C8—C8i176.81 (19)C1—S1—N1—C765.19 (17)
C6—C1—S1—O223.21 (17)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2ii0.80 (2)2.39 (2)3.042 (2)139 (2)
N1—H1N···O1iii0.80 (2)2.46 (2)3.093 (2)137 (2)
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC16H16N2O6S2
Mr396.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)8.7800 (5), 5.1590 (3), 19.622 (1)
β (°) 101.255 (5)
V3)871.71 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.32 × 0.20 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.898, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
3275, 1751, 1427
Rint0.015
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.05
No. of reflections1751
No. of parameters121
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.800 (15)2.394 (18)3.042 (2)138.8 (19)
N1—H1N···O1ii0.800 (15)2.460 (18)3.093 (2)136.9 (19)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research, Government of India, New Delhi, for the award of a research fellowship.

References

First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2750.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds