inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

LaZnB5O10, the first lanthanum zinc borate

aDepartment of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
*Correspondence e-mail: jzwzwj@163.com

(Received 11 November 2009; accepted 26 November 2009; online 4 December 2009)

Lanthanum zinc penta­borate, LaZnB5O10, was synthesized by flux-supported solid-state reaction. It is a member of the LnMB5O10 (Ln = rare earth ion and M = divalent metal ion) structure type. The crystal shows a three-dimensional structure constructed from two-dimensional {[B5O10]5−}n layers with the lanthanum (coordination number nine) and zinc (coordination number six) ions filling in the inter­layers.

Related literature

For general background to inorganic borates and their applications, see: Thakare et al. (2004[Thakare, D. S., Omanwar, S. K., Muthal, P. L., Dhopte, S. M., Kondawar, V. K. & Mohari, S. V. (2004). Phys. Status Solidi, 201, 574-581.]); Yavetskiy et al. (2007[Yavetskiy, R. P., Tolmachev, A. V., Dolzhenkova, E. F. & Baumer, V. N. (2007). J. Alloys Compd. 429, 77-81.]); Ye & Chai (1999[Ye, Q. & Chai, B. H. T. (1999). J. Cryst. Growth, 197, 228-235.]); Becker (1998[Becker, P. (1998). Adv. Mater. 10, 979-991.]). For related structures, see: Bernadette et al. (1980[Bernadette, S., Marcus, V. & Claude, F. (1980). J. Solid State Chem. 34, 271-277.]); Abdullaev et al. (1980[Abdullaev, G. K., Mamedov, K. S., Dzhafarov, G. G. & Aliev, O. A. (1980). Zh. Neorg. Khim. 25, 364-367.]); Campa et al. (1995[Campa, J. A., Cascales, C., Gutierrez Puebla, E., Mira, J., Monge, M. A., Rasines, I., Ruvas, J. & Ruiz Valero, C. (1995). J. Alloys Compd. 225, 225-229.]). For the bond-valence-sum (BVS) calculation, see: Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]).

Experimental

Crystal data
  • LaZnB5O10

  • Mr = 418.33

  • Monoclinic, P 21 /n

  • a = 8.7923 (19) Å

  • b = 7.629 (2) Å

  • c = 9.566 (2) Å

  • β = 92.667 (19)°

  • V = 641.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.37 mm−1

  • T = 295 K

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.259, Tmax = 0.347

  • 3122 measured reflections

  • 2318 independent reflections

  • 2174 reflections with I > 2σ(I)

  • Rint = 0.033

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.086

  • S = 1.01

  • 2318 reflections

  • 155 parameters

  • Δρmax = 3.81 e Å−3

  • Δρmin = −1.63 e Å−3

Data collection: XSCANS (Bruker, 1997[Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Inorganic borates have long been a focus of research for their wide applications as phosphors, laser materials and nonlinear optical (NLO) materials etc (Thakare et al., 2004; Yavetskiy et al., 2007; Ye et al., 1999; Becker et al., 1998). Among these materials, rear-earth borates especially lanthanum or yttrium borates, have been proved to be attractive matrices for lasing materials or rare-earths sensitizer-activator pairs containing phosphors. LaZnB5O10 is a new member of the family of LnMB5O10 (Ln = rear earth ions, M = divalent metal ions) (Abdullaev et al., 1980; Bernadette et al., 1980; Campa et al., 1995). The asymmetric unit of LaZnB5O10 contains one unique La ion, one Zn ion, five B atoms and ten oxygen atoms as shown in Fig.1. Three BO4 tetrahedra and two BO3 triangles are linked to form a B5O12 double-ring group (Fig.2a), and these B5O12 groups are further connected to form a [B5O10]5-n layer through sharing BO4 tetrahedra.

The local coordination geometries of Zn and La atoms in LaZnB5O10 are also shown in Fig.2. As can be observed, the La1 atom is bonded to nine oxygen atoms to form a distorted tetrakaidecahedron. The bond valence sum (BVS) of 3.143 for La3+ ions calculated by the Brese & Keeffe (Brese et al., 1991) formalism shows that its valence requirement is satisfied by this coordination. The distorted tetrakaidecahedra here are further connected with each other through sharing edges to form a one-dimensional infinite chain which is arranged between the [B5O10]5-n layers along b axis. The zinc cation adopts a sixfolded coordination to form a distorted octahedron. However, among these Zn—O bonds, Zn1—O1 and Zn1—O4 are significantly longer than the others. This could be probably due to the fact that the O1-O4 edge is shared with a BO3 group. This reduces the O1-Zn-O4 angle and tends to lengthen the bonds. Two adjacent ZnO6 octahedra are connected with each other through two bridging oxygen atoms and the zinc atoms are almost embedded in the [B5O10]5-n layers. Both the zinc and lanthanum atoms link the adjacent [B5O10]5-n layers to form a three dimensional framework (Fig.3).

Related literature top

For general background to inorganic borates and their applications, see: Thakare et al. (2004); Yavetskiy et al. (2007); Ye et al. (1999); Becker et al. (1998). For related structures, see: Bernadette et al. (1980); Abdullaev et al. (1980); Campa et al. (1995). For the bond-valence-sum (BVS) calculation, see: Brese et al. (1991).

Experimental top

Single crystals of the title compound were synthesized by flux-supported solid-state reaction. A mixture La2O3(99.9%), ZnO(99.0%) and H3BO3(99.99%) in the molar ratio of 1:2:14 was ground to a fine powder in a mortar and compressed into a Pt crucible. The mixture was gradually heated to 1273 K. After the mixture melted completely, it was cooled down to 1100 K at a rate of 1 °K/h, followed by cooling to room temperature at 20 °K/h. The title crystals could be obtained from the top section of the solidified melt. While in the bottom of the solidified melt, plate-like crystals were obtained which were confirmed to be LaB3O6 through the powder X-ray diffraction (PXRD) method.

Computing details top

Data collection: XSCANS (Bruker, 2001); cell refinement: XSCANS (Bruker, 2001); data reduction: XSCANS (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of LaZnB5O10 with 35% probability ellipsoids, showing the atomic numbering scheme.
[Figure 2] Fig. 2. (a) The B5O12 double-ring group; (b) The coordination environment of the La atom; (c) The coordination environment of the Zn atom. The blue polyhedra are the [BO3] triangles while the purple polyhedra are the [BO4] tetrahedra in the lower two figures.
[Figure 3] Fig. 3. The representation of the three-dimensional LaZnB5O10 structure projected along the [010] direction with the BO3 triangles and BO4 tetrahedra. The structure contains the infinite two-dimensional [B5O10]5-n layers running almost perpendicular to the [101] direction. The La atoms are located in layers, while the Zn atoms are almost embedded in the layers.
Lanthanum zinc pentaborate top
Crystal data top
LaZnB5O10F(000) = 768
Mr = 418.33Dx = 4.335 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 36 reflections
a = 8.7923 (19) Åθ = 5.8–12.5°
b = 7.629 (2) ŵ = 10.37 mm1
c = 9.566 (2) ÅT = 295 K
β = 92.667 (19)°Prism, colorless
V = 641.0 (3) Å30.10 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker P4
diffractometer
2174 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 32.5°, θmin = 3.1°
ω scansh = 131
Absorption correction: ψ scan
(North et al., 1968)
k = 111
Tmin = 0.259, Tmax = 0.347l = 1414
3122 measured reflections3 standard reflections every 97 reflections
2318 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.001P)2 + 14.P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.01Δρmax = 3.81 e Å3
2318 reflectionsΔρmin = 1.63 e Å3
155 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.133 (3)
Crystal data top
LaZnB5O10V = 641.0 (3) Å3
Mr = 418.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7923 (19) ŵ = 10.37 mm1
b = 7.629 (2) ÅT = 295 K
c = 9.566 (2) Å0.10 × 0.08 × 0.06 mm
β = 92.667 (19)°
Data collection top
Bruker P4
diffractometer
2174 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.033
Tmin = 0.259, Tmax = 0.3473 standard reflections every 97 reflections
3122 measured reflections intensity decay: none
2318 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.001P)2 + 14.P]
where P = (Fo2 + 2Fc2)/3
S = 1.01Δρmax = 3.81 e Å3
2318 reflectionsΔρmin = 1.63 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.18084 (3)0.68446 (4)0.23425 (3)0.00861 (13)
Zn10.88916 (7)0.41215 (8)0.38049 (7)0.01160 (16)
O10.4743 (4)0.7209 (5)0.2592 (4)0.0097 (6)
O20.5128 (4)0.4196 (5)0.1869 (4)0.0105 (6)
O30.6830 (4)0.5372 (5)0.3613 (4)0.0104 (6)
O40.5839 (4)0.9780 (5)0.3570 (4)0.0099 (6)
O50.3289 (4)0.8921 (5)0.4150 (4)0.0097 (6)
O60.5383 (4)0.7202 (5)0.5088 (4)0.0102 (6)
O70.8125 (4)1.1547 (5)0.3721 (4)0.0100 (6)
O80.6912 (4)0.3737 (5)0.0101 (4)0.0098 (6)
O90.5056 (4)0.1522 (5)0.0688 (4)0.0101 (6)
O100.7299 (4)0.5391 (5)0.6081 (4)0.0112 (6)
B10.5877 (6)0.5824 (7)0.2330 (5)0.0082 (8)
B20.5734 (6)0.3144 (7)0.0839 (6)0.0096 (9)
B30.4843 (6)0.8275 (7)0.3895 (6)0.0092 (9)
B40.7168 (6)1.0340 (7)0.4479 (5)0.0093 (9)
B50.6498 (6)0.5943 (7)0.4924 (6)0.0092 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.00934 (16)0.00822 (17)0.00831 (16)0.00018 (8)0.00087 (9)0.00037 (8)
Zn10.0114 (3)0.0094 (3)0.0140 (3)0.0001 (2)0.0000 (2)0.0002 (2)
O10.0091 (14)0.0105 (15)0.0095 (14)0.0007 (12)0.0003 (11)0.0014 (12)
O20.0115 (15)0.0104 (15)0.0098 (14)0.0014 (12)0.0028 (12)0.0009 (12)
O30.0126 (15)0.0104 (15)0.0083 (14)0.0029 (12)0.0006 (11)0.0016 (12)
O40.0096 (14)0.0099 (15)0.0100 (14)0.0025 (12)0.0002 (11)0.0007 (12)
O50.0073 (14)0.0135 (16)0.0085 (14)0.0028 (12)0.0008 (11)0.0006 (12)
O60.0107 (14)0.0082 (14)0.0117 (15)0.0026 (12)0.0010 (12)0.0003 (12)
O70.0100 (15)0.0087 (14)0.0116 (15)0.0003 (12)0.0033 (12)0.0006 (12)
O80.0108 (15)0.0085 (15)0.0103 (14)0.0028 (12)0.0036 (12)0.0011 (12)
O90.0121 (15)0.0087 (15)0.0098 (15)0.0018 (12)0.0018 (12)0.0004 (12)
O100.0121 (15)0.0114 (16)0.0099 (14)0.0014 (13)0.0001 (12)0.0020 (12)
B10.010 (2)0.007 (2)0.0076 (19)0.0018 (16)0.0003 (16)0.0002 (16)
B20.008 (2)0.012 (2)0.009 (2)0.0015 (17)0.0019 (16)0.0001 (17)
B30.009 (2)0.010 (2)0.009 (2)0.0031 (17)0.0014 (16)0.0008 (16)
B40.010 (2)0.010 (2)0.0080 (19)0.0003 (17)0.0009 (16)0.0005 (16)
B50.009 (2)0.009 (2)0.010 (2)0.0006 (16)0.0027 (16)0.0002 (17)
Geometric parameters (Å, º) top
La1—O10i2.385 (4)B2—O21.396 (6)
La1—O10ii2.478 (4)B1—O21.464 (7)
La1—O6ii2.549 (4)B5—O31.372 (6)
La1—O9iii2.566 (4)B1—O31.495 (6)
La1—O12.595 (4)B3—O41.486 (7)
La1—O2iii2.608 (4)B4—O41.486 (7)
La1—O52.643 (4)B3—O51.484 (6)
La1—O5iv2.648 (4)B4—O5x1.500 (6)
La1—O8v2.678 (4)B5—O61.387 (6)
Zn1—O32.049 (4)B3—O61.466 (7)
Zn1—O7vi2.077 (4)B4—O71.462 (7)
Zn1—O9vii2.088 (4)B1—O7ix1.472 (6)
Zn1—O9viii2.099 (4)B2—O81.358 (6)
Zn1—O1ix2.346 (4)B4—O8viii1.511 (7)
Zn1—O4ix2.350 (4)B2—O91.378 (7)
B1—O11.482 (6)B5—O101.351 (6)
B3—O11.488 (7)
O10i—La1—O10ii148.99 (6)O7vi—Zn1—O9vii87.47 (15)
O10i—La1—O6ii150.84 (13)O3—Zn1—O9viii89.60 (15)
O10ii—La1—O6ii55.60 (12)O7vi—Zn1—O9viii166.66 (15)
O10i—La1—O9iii70.71 (13)O9vii—Zn1—O9viii79.20 (16)
O10ii—La1—O9iii124.81 (12)O3—Zn1—O1ix135.44 (14)
O6ii—La1—O9iii110.05 (12)O7vi—Zn1—O1ix64.12 (14)
O10i—La1—O173.86 (13)O9vii—Zn1—O1ix95.83 (14)
O10ii—La1—O176.04 (12)O9viii—Zn1—O1ix116.27 (14)
O6ii—La1—O1119.66 (12)O3—Zn1—O4ix86.69 (14)
O9iii—La1—O1127.52 (12)O7vi—Zn1—O4ix102.25 (14)
O10i—La1—O2iii120.59 (12)O9vii—Zn1—O4ix144.77 (14)
O10ii—La1—O2iii71.71 (12)O9viii—Zn1—O4ix88.49 (14)
O6ii—La1—O2iii75.30 (12)O1ix—Zn1—O4ix60.35 (13)
O9iii—La1—O2iii53.55 (12)O2—B1—O7ix112.7 (4)
O1—La1—O2iii124.01 (12)O2—B1—O1111.0 (4)
O10i—La1—O582.96 (13)O7ix—B1—O1106.0 (4)
O10ii—La1—O573.55 (12)O2—B1—O3106.2 (4)
O6ii—La1—O5126.16 (12)O7ix—B1—O3108.5 (4)
O9iii—La1—O583.62 (12)O1—B1—O3112.4 (4)
O1—La1—O554.44 (12)O8—B2—O9125.6 (5)
O2iii—La1—O572.95 (12)O8—B2—O2120.1 (5)
O10i—La1—O5iv74.93 (12)O9—B2—O2114.4 (4)
O10ii—La1—O5iv117.16 (12)O6—B3—O5108.9 (4)
O6ii—La1—O5iv77.42 (12)O6—B3—O4115.0 (4)
O9iii—La1—O5iv108.04 (12)O5—B3—O4109.5 (4)
O1—La1—O5iv98.43 (12)O6—B3—O1110.6 (4)
O2iii—La1—O5iv136.90 (12)O5—B3—O1107.5 (4)
O5—La1—O5iv149.36 (8)O4—B3—O1105.1 (4)
O10i—La1—O8v107.11 (12)O7—B4—O4110.2 (4)
O10ii—La1—O8v68.05 (12)O7—B4—O5x112.4 (4)
O6ii—La1—O8v61.25 (12)O4—B4—O5x112.6 (4)
O9iii—La1—O8v159.02 (12)O7—B4—O8viii109.2 (4)
O1—La1—O8v69.00 (12)O4—B4—O8viii108.6 (4)
O2iii—La1—O8v132.27 (12)O5x—B4—O8viii103.5 (4)
O5—La1—O8v117.15 (11)O10—B5—O3121.6 (5)
O5iv—La1—O8v52.70 (11)O10—B5—O6117.9 (4)
O3—Zn1—O7vi98.79 (16)O3—B5—O6120.4 (5)
O3—Zn1—O9vii125.64 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x+1, y+1, z; (vi) x, y1, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x+3/2, y+1/2, z+1/2; (ix) x+3/2, y1/2, z+1/2; (x) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaLaZnB5O10
Mr418.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)8.7923 (19), 7.629 (2), 9.566 (2)
β (°) 92.667 (19)
V3)641.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)10.37
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.259, 0.347
No. of measured, independent and
observed [I > 2σ(I)] reflections
3122, 2318, 2174
Rint0.033
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.086, 1.01
No. of reflections2318
No. of parameters155
w = 1/[σ2(Fo2) + (0.001P)2 + 14.P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.81, 1.63

Computer programs: XSCANS (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).

 

Acknowledgements

We thank the National Natural Science Foundation of China (No. 50590402) for financial support.

References

First citationAbdullaev, G. K., Mamedov, K. S., Dzhafarov, G. G. & Aliev, O. A. (1980). Zh. Neorg. Khim. 25, 364–367.  CAS Google Scholar
First citationBecker, P. (1998). Adv. Mater. 10, 979–991.  CrossRef CAS Google Scholar
First citationBernadette, S., Marcus, V. & Claude, F. (1980). J. Solid State Chem. 34, 271–277.  Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampa, J. A., Cascales, C., Gutierrez Puebla, E., Mira, J., Monge, M. A., Rasines, I., Ruvas, J. & Ruiz Valero, C. (1995). J. Alloys Compd. 225, 225–229.  CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThakare, D. S., Omanwar, S. K., Muthal, P. L., Dhopte, S. M., Kondawar, V. K. & Mohari, S. V. (2004). Phys. Status Solidi, 201, 574–581.  CrossRef CAS Google Scholar
First citationYavetskiy, R. P., Tolmachev, A. V., Dolzhenkova, E. F. & Baumer, V. N. (2007). J. Alloys Compd. 429, 77–81.  Web of Science CrossRef CAS Google Scholar
First citationYe, Q. & Chai, B. H. T. (1999). J. Cryst. Growth, 197, 228–235.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds