inorganic compounds
LaZnB5O10, the first lanthanum zinc borate
aDepartment of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
*Correspondence e-mail: jzwzwj@163.com
Lanthanum zinc pentaborate, LaZnB5O10, was synthesized by flux-supported solid-state reaction. It is a member of the LnMB5O10 (Ln = rare earth ion and M = divalent metal ion) structure type. The crystal shows a three-dimensional structure constructed from two-dimensional {[B5O10]5−}n layers with the lanthanum (coordination number nine) and zinc (coordination number six) ions filling in the interlayers.
Related literature
For general background to inorganic borates and their applications, see: Thakare et al. (2004); Yavetskiy et al. (2007); Ye & Chai (1999); Becker (1998). For related structures, see: Bernadette et al. (1980); Abdullaev et al. (1980); Campa et al. (1995). For the bond-valence-sum (BVS) calculation, see: Brese & O'Keeffe (1991).
Experimental
Crystal data
|
Data collection: XSCANS (Bruker, 1997); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809050922/br2126sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809050922/br2126Isup2.hkl
Single crystals of the title compound were synthesized by flux-supported solid-state reaction. A mixture La2O3(99.9%), ZnO(99.0%) and H3BO3(99.99%) in the molar ratio of 1:2:14 was ground to a fine powder in a mortar and compressed into a Pt crucible. The mixture was gradually heated to 1273 K. After the mixture melted completely, it was cooled down to 1100 K at a rate of 1 °K/h, followed by cooling to room temperature at 20 °K/h. The title crystals could be obtained from the top section of the solidified melt. While in the bottom of the solidified melt, plate-like crystals were obtained which were confirmed to be LaB3O6 through the powder X-ray diffraction (PXRD) method.
Data collection: XSCANS (Bruker, 2001); cell
XSCANS (Bruker, 2001); data reduction: XSCANS (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).LaZnB5O10 | F(000) = 768 |
Mr = 418.33 | Dx = 4.335 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 36 reflections |
a = 8.7923 (19) Å | θ = 5.8–12.5° |
b = 7.629 (2) Å | µ = 10.37 mm−1 |
c = 9.566 (2) Å | T = 295 K |
β = 92.667 (19)° | Prism, colorless |
V = 641.0 (3) Å3 | 0.10 × 0.08 × 0.06 mm |
Z = 4 |
Bruker P4 diffractometer | 2174 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.033 |
Graphite monochromator | θmax = 32.5°, θmin = 3.1° |
ω scans | h = −13→1 |
Absorption correction: ψ scan (North et al., 1968) | k = −1→11 |
Tmin = 0.259, Tmax = 0.347 | l = −14→14 |
3122 measured reflections | 3 standard reflections every 97 reflections |
2318 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.001P)2 + 14.P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.086 | (Δ/σ)max < 0.001 |
S = 1.01 | Δρmax = 3.81 e Å−3 |
2318 reflections | Δρmin = −1.63 e Å−3 |
155 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.133 (3) |
LaZnB5O10 | V = 641.0 (3) Å3 |
Mr = 418.33 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.7923 (19) Å | µ = 10.37 mm−1 |
b = 7.629 (2) Å | T = 295 K |
c = 9.566 (2) Å | 0.10 × 0.08 × 0.06 mm |
β = 92.667 (19)° |
Bruker P4 diffractometer | 2174 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.033 |
Tmin = 0.259, Tmax = 0.347 | 3 standard reflections every 97 reflections |
3122 measured reflections | intensity decay: none |
2318 independent reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.001P)2 + 14.P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | Δρmax = 3.81 e Å−3 |
2318 reflections | Δρmin = −1.63 e Å−3 |
155 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.18084 (3) | 0.68446 (4) | 0.23425 (3) | 0.00861 (13) | |
Zn1 | 0.88916 (7) | 0.41215 (8) | 0.38049 (7) | 0.01160 (16) | |
O1 | 0.4743 (4) | 0.7209 (5) | 0.2592 (4) | 0.0097 (6) | |
O2 | 0.5128 (4) | 0.4196 (5) | 0.1869 (4) | 0.0105 (6) | |
O3 | 0.6830 (4) | 0.5372 (5) | 0.3613 (4) | 0.0104 (6) | |
O4 | 0.5839 (4) | 0.9780 (5) | 0.3570 (4) | 0.0099 (6) | |
O5 | 0.3289 (4) | 0.8921 (5) | 0.4150 (4) | 0.0097 (6) | |
O6 | 0.5383 (4) | 0.7202 (5) | 0.5088 (4) | 0.0102 (6) | |
O7 | 0.8125 (4) | 1.1547 (5) | 0.3721 (4) | 0.0100 (6) | |
O8 | 0.6912 (4) | 0.3737 (5) | 0.0101 (4) | 0.0098 (6) | |
O9 | 0.5056 (4) | 0.1522 (5) | 0.0688 (4) | 0.0101 (6) | |
O10 | 0.7299 (4) | 0.5391 (5) | 0.6081 (4) | 0.0112 (6) | |
B1 | 0.5877 (6) | 0.5824 (7) | 0.2330 (5) | 0.0082 (8) | |
B2 | 0.5734 (6) | 0.3144 (7) | 0.0839 (6) | 0.0096 (9) | |
B3 | 0.4843 (6) | 0.8275 (7) | 0.3895 (6) | 0.0092 (9) | |
B4 | 0.7168 (6) | 1.0340 (7) | 0.4479 (5) | 0.0093 (9) | |
B5 | 0.6498 (6) | 0.5943 (7) | 0.4924 (6) | 0.0092 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.00934 (16) | 0.00822 (17) | 0.00831 (16) | 0.00018 (8) | 0.00087 (9) | 0.00037 (8) |
Zn1 | 0.0114 (3) | 0.0094 (3) | 0.0140 (3) | 0.0001 (2) | 0.0000 (2) | −0.0002 (2) |
O1 | 0.0091 (14) | 0.0105 (15) | 0.0095 (14) | −0.0007 (12) | 0.0003 (11) | 0.0014 (12) |
O2 | 0.0115 (15) | 0.0104 (15) | 0.0098 (14) | −0.0014 (12) | 0.0028 (12) | −0.0009 (12) |
O3 | 0.0126 (15) | 0.0104 (15) | 0.0083 (14) | 0.0029 (12) | 0.0006 (11) | −0.0016 (12) |
O4 | 0.0096 (14) | 0.0099 (15) | 0.0100 (14) | −0.0025 (12) | −0.0002 (11) | 0.0007 (12) |
O5 | 0.0073 (14) | 0.0135 (16) | 0.0085 (14) | 0.0028 (12) | 0.0008 (11) | −0.0006 (12) |
O6 | 0.0107 (14) | 0.0082 (14) | 0.0117 (15) | 0.0026 (12) | 0.0010 (12) | 0.0003 (12) |
O7 | 0.0100 (15) | 0.0087 (14) | 0.0116 (15) | −0.0003 (12) | 0.0033 (12) | −0.0006 (12) |
O8 | 0.0108 (15) | 0.0085 (15) | 0.0103 (14) | −0.0028 (12) | 0.0036 (12) | −0.0011 (12) |
O9 | 0.0121 (15) | 0.0087 (15) | 0.0098 (15) | −0.0018 (12) | 0.0018 (12) | −0.0004 (12) |
O10 | 0.0121 (15) | 0.0114 (16) | 0.0099 (14) | 0.0014 (13) | −0.0001 (12) | 0.0020 (12) |
B1 | 0.010 (2) | 0.007 (2) | 0.0076 (19) | 0.0018 (16) | 0.0003 (16) | 0.0002 (16) |
B2 | 0.008 (2) | 0.012 (2) | 0.009 (2) | 0.0015 (17) | 0.0019 (16) | −0.0001 (17) |
B3 | 0.009 (2) | 0.010 (2) | 0.009 (2) | 0.0031 (17) | 0.0014 (16) | −0.0008 (16) |
B4 | 0.010 (2) | 0.010 (2) | 0.0080 (19) | 0.0003 (17) | 0.0009 (16) | 0.0005 (16) |
B5 | 0.009 (2) | 0.009 (2) | 0.010 (2) | 0.0006 (16) | 0.0027 (16) | 0.0002 (17) |
La1—O10i | 2.385 (4) | B2—O2 | 1.396 (6) |
La1—O10ii | 2.478 (4) | B1—O2 | 1.464 (7) |
La1—O6ii | 2.549 (4) | B5—O3 | 1.372 (6) |
La1—O9iii | 2.566 (4) | B1—O3 | 1.495 (6) |
La1—O1 | 2.595 (4) | B3—O4 | 1.486 (7) |
La1—O2iii | 2.608 (4) | B4—O4 | 1.486 (7) |
La1—O5 | 2.643 (4) | B3—O5 | 1.484 (6) |
La1—O5iv | 2.648 (4) | B4—O5x | 1.500 (6) |
La1—O8v | 2.678 (4) | B5—O6 | 1.387 (6) |
Zn1—O3 | 2.049 (4) | B3—O6 | 1.466 (7) |
Zn1—O7vi | 2.077 (4) | B4—O7 | 1.462 (7) |
Zn1—O9vii | 2.088 (4) | B1—O7ix | 1.472 (6) |
Zn1—O9viii | 2.099 (4) | B2—O8 | 1.358 (6) |
Zn1—O1ix | 2.346 (4) | B4—O8viii | 1.511 (7) |
Zn1—O4ix | 2.350 (4) | B2—O9 | 1.378 (7) |
B1—O1 | 1.482 (6) | B5—O10 | 1.351 (6) |
B3—O1 | 1.488 (7) | ||
O10i—La1—O10ii | 148.99 (6) | O7vi—Zn1—O9vii | 87.47 (15) |
O10i—La1—O6ii | 150.84 (13) | O3—Zn1—O9viii | 89.60 (15) |
O10ii—La1—O6ii | 55.60 (12) | O7vi—Zn1—O9viii | 166.66 (15) |
O10i—La1—O9iii | 70.71 (13) | O9vii—Zn1—O9viii | 79.20 (16) |
O10ii—La1—O9iii | 124.81 (12) | O3—Zn1—O1ix | 135.44 (14) |
O6ii—La1—O9iii | 110.05 (12) | O7vi—Zn1—O1ix | 64.12 (14) |
O10i—La1—O1 | 73.86 (13) | O9vii—Zn1—O1ix | 95.83 (14) |
O10ii—La1—O1 | 76.04 (12) | O9viii—Zn1—O1ix | 116.27 (14) |
O6ii—La1—O1 | 119.66 (12) | O3—Zn1—O4ix | 86.69 (14) |
O9iii—La1—O1 | 127.52 (12) | O7vi—Zn1—O4ix | 102.25 (14) |
O10i—La1—O2iii | 120.59 (12) | O9vii—Zn1—O4ix | 144.77 (14) |
O10ii—La1—O2iii | 71.71 (12) | O9viii—Zn1—O4ix | 88.49 (14) |
O6ii—La1—O2iii | 75.30 (12) | O1ix—Zn1—O4ix | 60.35 (13) |
O9iii—La1—O2iii | 53.55 (12) | O2—B1—O7ix | 112.7 (4) |
O1—La1—O2iii | 124.01 (12) | O2—B1—O1 | 111.0 (4) |
O10i—La1—O5 | 82.96 (13) | O7ix—B1—O1 | 106.0 (4) |
O10ii—La1—O5 | 73.55 (12) | O2—B1—O3 | 106.2 (4) |
O6ii—La1—O5 | 126.16 (12) | O7ix—B1—O3 | 108.5 (4) |
O9iii—La1—O5 | 83.62 (12) | O1—B1—O3 | 112.4 (4) |
O1—La1—O5 | 54.44 (12) | O8—B2—O9 | 125.6 (5) |
O2iii—La1—O5 | 72.95 (12) | O8—B2—O2 | 120.1 (5) |
O10i—La1—O5iv | 74.93 (12) | O9—B2—O2 | 114.4 (4) |
O10ii—La1—O5iv | 117.16 (12) | O6—B3—O5 | 108.9 (4) |
O6ii—La1—O5iv | 77.42 (12) | O6—B3—O4 | 115.0 (4) |
O9iii—La1—O5iv | 108.04 (12) | O5—B3—O4 | 109.5 (4) |
O1—La1—O5iv | 98.43 (12) | O6—B3—O1 | 110.6 (4) |
O2iii—La1—O5iv | 136.90 (12) | O5—B3—O1 | 107.5 (4) |
O5—La1—O5iv | 149.36 (8) | O4—B3—O1 | 105.1 (4) |
O10i—La1—O8v | 107.11 (12) | O7—B4—O4 | 110.2 (4) |
O10ii—La1—O8v | 68.05 (12) | O7—B4—O5x | 112.4 (4) |
O6ii—La1—O8v | 61.25 (12) | O4—B4—O5x | 112.6 (4) |
O9iii—La1—O8v | 159.02 (12) | O7—B4—O8viii | 109.2 (4) |
O1—La1—O8v | 69.00 (12) | O4—B4—O8viii | 108.6 (4) |
O2iii—La1—O8v | 132.27 (12) | O5x—B4—O8viii | 103.5 (4) |
O5—La1—O8v | 117.15 (11) | O10—B5—O3 | 121.6 (5) |
O5iv—La1—O8v | 52.70 (11) | O10—B5—O6 | 117.9 (4) |
O3—Zn1—O7vi | 98.79 (16) | O3—B5—O6 | 120.4 (5) |
O3—Zn1—O9vii | 125.64 (15) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, −y+3/2, z−1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) −x+1, −y+1, −z; (vi) x, y−1, z; (vii) x+1/2, −y+1/2, z+1/2; (viii) −x+3/2, y+1/2, −z+1/2; (ix) −x+3/2, y−1/2, −z+1/2; (x) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | LaZnB5O10 |
Mr | 418.33 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 8.7923 (19), 7.629 (2), 9.566 (2) |
β (°) | 92.667 (19) |
V (Å3) | 641.0 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 10.37 |
Crystal size (mm) | 0.10 × 0.08 × 0.06 |
Data collection | |
Diffractometer | Bruker P4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.259, 0.347 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3122, 2318, 2174 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.756 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.086, 1.01 |
No. of reflections | 2318 |
No. of parameters | 155 |
w = 1/[σ2(Fo2) + (0.001P)2 + 14.P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 3.81, −1.63 |
Computer programs: XSCANS (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).
Acknowledgements
We thank the National Natural Science Foundation of China (No. 50590402) for financial support.
References
Abdullaev, G. K., Mamedov, K. S., Dzhafarov, G. G. & Aliev, O. A. (1980). Zh. Neorg. Khim. 25, 364–367. CAS Google Scholar
Becker, P. (1998). Adv. Mater. 10, 979–991. CrossRef CAS Google Scholar
Bernadette, S., Marcus, V. & Claude, F. (1980). J. Solid State Chem. 34, 271–277. Google Scholar
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Campa, J. A., Cascales, C., Gutierrez Puebla, E., Mira, J., Monge, M. A., Rasines, I., Ruvas, J. & Ruiz Valero, C. (1995). J. Alloys Compd. 225, 225–229. CrossRef CAS Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef IUCr Journals Google Scholar
Thakare, D. S., Omanwar, S. K., Muthal, P. L., Dhopte, S. M., Kondawar, V. K. & Mohari, S. V. (2004). Phys. Status Solidi, 201, 574–581. CrossRef CAS Google Scholar
Yavetskiy, R. P., Tolmachev, A. V., Dolzhenkova, E. F. & Baumer, V. N. (2007). J. Alloys Compd. 429, 77–81. Web of Science CrossRef CAS Google Scholar
Ye, Q. & Chai, B. H. T. (1999). J. Cryst. Growth, 197, 228–235. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Inorganic borates have long been a focus of research for their wide applications as phosphors, laser materials and nonlinear optical (NLO) materials etc (Thakare et al., 2004; Yavetskiy et al., 2007; Ye et al., 1999; Becker et al., 1998). Among these materials, rear-earth borates especially lanthanum or yttrium borates, have been proved to be attractive matrices for lasing materials or rare-earths sensitizer-activator pairs containing phosphors. LaZnB5O10 is a new member of the family of LnMB5O10 (Ln = rear earth ions, M = divalent metal ions) (Abdullaev et al., 1980; Bernadette et al., 1980; Campa et al., 1995). The asymmetric unit of LaZnB5O10 contains one unique La ion, one Zn ion, five B atoms and ten oxygen atoms as shown in Fig.1. Three BO4 tetrahedra and two BO3 triangles are linked to form a B5O12 double-ring group (Fig.2a), and these B5O12 groups are further connected to form a [B5O10]5-n layer through sharing BO4 tetrahedra.
The local coordination geometries of Zn and La atoms in LaZnB5O10 are also shown in Fig.2. As can be observed, the La1 atom is bonded to nine oxygen atoms to form a distorted tetrakaidecahedron. The bond valence sum (BVS) of 3.143 for La3+ ions calculated by the Brese & Keeffe (Brese et al., 1991) formalism shows that its valence requirement is satisfied by this coordination. The distorted tetrakaidecahedra here are further connected with each other through sharing edges to form a one-dimensional infinite chain which is arranged between the [B5O10]5-n layers along b axis. The zinc cation adopts a sixfolded coordination to form a distorted octahedron. However, among these Zn—O bonds, Zn1—O1 and Zn1—O4 are significantly longer than the others. This could be probably due to the fact that the O1-O4 edge is shared with a BO3 group. This reduces the O1-Zn-O4 angle and tends to lengthen the bonds. Two adjacent ZnO6 octahedra are connected with each other through two bridging oxygen atoms and the zinc atoms are almost embedded in the [B5O10]5-n layers. Both the zinc and lanthanum atoms link the adjacent [B5O10]5-n layers to form a three dimensional framework (Fig.3).