organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-(p-Phenyl­enedi­methyl­ene)dipiperidin-4-one

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, bDepartment of Physics, The Madura College, Madurai 625 011, India, cMaterials Research Centre, Indian Institute of Science, Bangalore 560 012, India, and dDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk

(Received 5 December 2009; accepted 9 December 2009; online 16 December 2009)

In the mol­ecule of the title compound, C18H24N2O2, the piperidine rings are in chair conformations. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonding. There are neither C—H⋯π nor ππ inter­actions in the structure.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H24N2O2

  • Mr = 300.39

  • Monoclinic, P 21 /n

  • a = 6.2701 (5) Å

  • b = 8.0990 (6) Å

  • c = 15.8978 (13) Å

  • β = 98.275 (2)°

  • V = 798.91 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.19 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.987

  • 4782 measured reflections

  • 1826 independent reflections

  • 1424 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.05

  • 1826 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O1i 0.97 2.56 3.2235 (17) 126
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The configuration and conformation of the title compound, (I) and the atom numbering scheme are shown in the ORTEP drawing (Fig. 1). The piperidone ring exibits chair conformation as evident from the puckering parameters (Q)=0.549 (1) Å, θ = 173.4 (2) °, ψ = 181.9 (1) ° (Cremer & Pople, 1975).

In the crystal structure, an intermolecular C—H···O bond is found generating R22(24) motif (Bernstein et al., 1995).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring puckering parameters, see Cremer & Pople (1975).

Experimental top

A mixture of 4-piperidone monohydrate hydrochloride (2 mol), 1,4-bis(bromomethyl)benzene (1 mol) and potassium carbonate (6 mol) in anhydrous benzene was refluxed for 7 h. The completion of reaction was monitored by TLC. Potassium carbonate was filtered off and the excess solvent was removed under reduced pressure. The solid obtained was purified over a column of silica gel (60–120 mesh size) using benzene-ethyl acetate (60–80 °C) in the ratio of 20:80. Yield: 40% m.p. 289°C.

Refinement top

The H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.97 Å.Uiso = 1.2Ueq(C) for CH and CH2 groups.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with atom numbering scheme and 50% probability displacement ellipsoids.
1,1'-(p-Phenylenedimethylene)dipiperidin-4-one top
Crystal data top
C18H24N2O2F(000) = 324
Mr = 300.39Dx = 1.249 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2500 reflections
a = 6.2701 (5) Åθ = 2–30°
b = 8.0990 (6) ŵ = 0.08 mm1
c = 15.8978 (13) ÅT = 293 K
β = 98.275 (2)°Block, colourless
V = 798.91 (11) Å30.19 × 0.17 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
1826 independent reflections
Radiation source: fine-focus sealed tube1424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 84
Tmin = 0.984, Tmax = 0.987k = 1010
4782 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.1074P]
where P = (Fo2 + 2Fc2)/3
1826 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C18H24N2O2V = 798.91 (11) Å3
Mr = 300.39Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.2701 (5) ŵ = 0.08 mm1
b = 8.0990 (6) ÅT = 293 K
c = 15.8978 (13) Å0.19 × 0.17 × 0.15 mm
β = 98.275 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1826 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1424 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.987Rint = 0.014
4782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
1826 reflectionsΔρmin = 0.14 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.2931 (2)0.43945 (15)0.38729 (9)0.0451 (3)
H2A0.32780.43300.32990.054*
H2B0.41960.40600.42600.054*
C30.2358 (2)0.61783 (16)0.40660 (10)0.0544 (4)
H3A0.21910.62760.46610.065*
H3B0.35190.69050.39590.065*
C40.0312 (2)0.66908 (16)0.35253 (8)0.0440 (3)
C50.1488 (2)0.54905 (18)0.35354 (11)0.0584 (4)
H5A0.26800.57960.31050.070*
H5B0.19910.55280.40840.070*
C60.0757 (2)0.37490 (18)0.33662 (10)0.0544 (4)
H6A0.19180.29820.34190.065*
H6B0.04340.36820.27890.065*
C70.1742 (2)0.15730 (16)0.37561 (9)0.0493 (4)
H7A0.22500.15750.32080.059*
H7B0.04580.08910.37050.059*
C80.3452 (2)0.07991 (14)0.44028 (8)0.0405 (3)
C90.3083 (2)0.05404 (16)0.52331 (8)0.0450 (3)
H90.17990.09000.54000.054*
C100.5395 (2)0.02482 (16)0.41824 (8)0.0444 (3)
H100.56820.04110.36310.053*
N10.11571 (16)0.32682 (12)0.39582 (7)0.0395 (3)
O10.01374 (19)0.79483 (13)0.31091 (7)0.0657 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0372 (6)0.0349 (7)0.0605 (8)0.0033 (5)0.0021 (5)0.0041 (6)
C30.0595 (8)0.0329 (7)0.0659 (9)0.0062 (6)0.0079 (7)0.0018 (6)
C40.0549 (8)0.0322 (6)0.0448 (7)0.0048 (5)0.0072 (6)0.0015 (5)
C50.0415 (7)0.0509 (9)0.0821 (10)0.0057 (6)0.0064 (7)0.0227 (7)
C60.0423 (7)0.0422 (8)0.0731 (10)0.0085 (6)0.0107 (7)0.0130 (7)
C70.0586 (8)0.0308 (7)0.0540 (8)0.0024 (6)0.0075 (6)0.0006 (6)
C80.0502 (7)0.0233 (5)0.0464 (7)0.0019 (5)0.0015 (5)0.0002 (5)
C90.0462 (7)0.0374 (7)0.0528 (8)0.0024 (5)0.0113 (6)0.0021 (5)
C100.0573 (8)0.0368 (7)0.0401 (6)0.0039 (6)0.0106 (6)0.0016 (5)
N10.0389 (5)0.0288 (5)0.0484 (6)0.0026 (4)0.0022 (4)0.0059 (4)
O10.0827 (8)0.0385 (6)0.0723 (7)0.0004 (5)0.0012 (6)0.0175 (5)
Geometric parameters (Å, º) top
C2—N11.4598 (16)C6—H6A0.9700
C2—C31.5304 (18)C6—H6B0.9700
C2—H2A0.9700C7—N11.4685 (17)
C2—H2B0.9700C7—C81.5104 (18)
C3—C41.4964 (19)C7—H7A0.9700
C3—H3A0.9700C7—H7B0.9700
C3—H3B0.9700C8—C91.3884 (18)
C4—O11.2109 (16)C8—C101.3888 (19)
C4—C51.492 (2)C9—C10i1.3882 (18)
C5—C61.519 (2)C9—H90.9300
C5—H5A0.9700C10—C9i1.3882 (18)
C5—H5B0.9700C10—H100.9300
C6—N11.4670 (16)
N1—C2—C3111.55 (11)C5—C6—H6A109.2
N1—C2—H2A109.3N1—C6—H6B109.2
C3—C2—H2A109.3C5—C6—H6B109.2
N1—C2—H2B109.3H6A—C6—H6B107.9
C3—C2—H2B109.3N1—C7—C8114.47 (10)
H2A—C2—H2B108.0N1—C7—H7A108.6
C4—C3—C2110.67 (11)C8—C7—H7A108.6
C4—C3—H3A109.5N1—C7—H7B108.6
C2—C3—H3A109.5C8—C7—H7B108.6
C4—C3—H3B109.5H7A—C7—H7B107.6
C2—C3—H3B109.5C9—C8—C10117.61 (11)
H3A—C3—H3B108.1C9—C8—C7120.72 (12)
O1—C4—C5123.01 (13)C10—C8—C7121.59 (12)
O1—C4—C3123.37 (13)C10i—C9—C8120.89 (12)
C5—C4—C3113.62 (11)C10i—C9—H9119.6
C4—C5—C6110.77 (12)C8—C9—H9119.6
C4—C5—H5A109.5C9i—C10—C8121.50 (12)
C6—C5—H5A109.5C9i—C10—H10119.3
C4—C5—H5B109.5C8—C10—H10119.3
C6—C5—H5B109.5C2—N1—C6109.77 (10)
H5A—C5—H5B108.1C2—N1—C7110.25 (11)
N1—C6—C5111.90 (12)C6—N1—C7108.36 (10)
N1—C6—H6A109.2
N1—C2—C3—C454.57 (16)C7—C8—C9—C10i176.62 (11)
C2—C3—C4—O1129.37 (15)C9—C8—C10—C9i0.3 (2)
C2—C3—C4—C549.69 (17)C7—C8—C10—C9i176.59 (12)
O1—C4—C5—C6129.33 (15)C3—C2—N1—C659.82 (15)
C3—C4—C5—C649.73 (18)C3—C2—N1—C7179.12 (11)
C4—C5—C6—N154.57 (17)C5—C6—N1—C260.02 (16)
N1—C7—C8—C962.64 (17)C5—C6—N1—C7179.53 (12)
N1—C7—C8—C10120.58 (14)C8—C7—N1—C269.70 (15)
C10—C8—C9—C10i0.3 (2)C8—C7—N1—C6170.15 (12)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O1ii0.972.563.2235 (17)126
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H24N2O2
Mr300.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.2701 (5), 8.0990 (6), 15.8978 (13)
β (°) 98.275 (2)
V3)798.91 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.19 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.984, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
4782, 1826, 1424
Rint0.014
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.05
No. of reflections1826
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O1i0.972.563.2235 (17)125.5
Symmetry code: (i) x, y1, z.
 

Acknowledgements

VV thanks the DST-India for funding through the Young Scientist-Fast Track Proposal.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds