organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl-N-ethyl-4-methyl­benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: iukhan.gcu@hotmail.com

(Received 5 December 2009; accepted 7 December 2009; online 12 December 2009)

The title compound, C15H23NO2S, contains cyclo­hexyl and ethyl substituents on the sulfonamide N atom and the cyclo­hexyl ring adopts a classic chair conformation. The dihedral angle between the benzene ring plane and the mean plane through the six atoms of the cyclo­hexyl ring is 59.92 (6)°. In the crystal structure, C—H⋯O hydrogen bonds link mol­ecules into sheets extending in the bc plane.

Related literature

For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Arshad et al. (2008[Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283-o2284.], 2009[Arshad, M. N., Mubashar-ur-Rehman, H., Khan, I. U., Shafiq, M. & Lo, K. M. (2009). Acta Cryst. E65, o3229.]); Khan et al. (2009[Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.]); Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.]).

[Scheme 1]

Experimental

Crystal data
  • C15H23NO2S

  • Mr = 281.40

  • Monoclinic, P 21 /c

  • a = 12.2269 (5) Å

  • b = 7.5818 (3) Å

  • c = 16.3045 (6) Å

  • β = 92.495 (2)°

  • V = 1510.03 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.43 × 0.32 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.914, Tmax = 0.969

  • 16676 measured reflections

  • 3714 independent reflections

  • 2251 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.122

  • S = 0.99

  • 3713 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O2i 0.97 2.66 3.530 (3) 150
C13—H13A⋯O1ii 0.96 2.60 3.512 (3) 159
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.])), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Our group has been involved in the synthesis and crystallographic studies of sulfonamide derivatives (Arshad et al., 2009).

The title compound is a benzenesulfonamide with cyclohexyl and ethyl substituents on the sulfonamide N1 atom, Fig. 1. Bond distances in the molecule are comparable to those in similar structures (Arshad et al., 2008; Khan et al., 2009; Gowda et al., 2007a,b,c). The cyclohexyl (C7···C12) ring adopts a classic chair conformation with puckering amplitude Q = 0.567 (2) Å, θ = 178.8 (2) °, ϕ = 214 (11) ° (Cremer & Pople, 1975) and the plane through this ring is inclined at 59.92 (6) ° to that of the C1···C6 benzene ring. In the crystal structure C—H···O hydrogen bonds involving the C13–H13 bond of the methyl group and the C10–H10B bond of the cyclohexyl ring link each molecule to the O1 and O2 atoms of individual sulphonamide units forming an extended two dimensional network in the bc plane (Table 1, Fig. 2).

Related literature top

For ring conformations, see: Cremer & Pople (1975). For related structures, see: Arshad et al. (2008, 2009); Khan et al. (2009); Gowda et al. (2007a,b,c).

Experimental top

A mixture of N-cyclohexyl-4-methyl benzene sulfonamide (1.089 g, 4.3 mmol), sodium hydride (0.21 g, 8.6 mmol) and N, N-dimethylformamide (10 ml) was stirred at room temperature for half an hour followed by addition of ethyl iodode (1.32 g, 8.6 mmol). Stirring was continued further for a period of three hours and the contents were poured over crushed ice. Precipitated product was isolated, washed and crystallized from a methanol solution.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.97 Å, Uiso = 1.2Ueq (C) for CH2, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms.

The 1 0 0 reflection was identified as being obscured by the beamstop and was omitted.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of (I) viewed down the a axis with hydrogen bonds drawn as dashed lines.
N-Cyclohexyl-N-ethyl-4-methylbenzenesulfonamide top
Crystal data top
C15H23NO2SF(000) = 608
Mr = 281.40Dx = 1.238 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3495 reflections
a = 12.2269 (5) Åθ = 2.5–25.6°
b = 7.5818 (3) ŵ = 0.21 mm1
c = 16.3045 (6) ÅT = 296 K
β = 92.495 (2)°Needle, white
V = 1510.03 (10) Å30.43 × 0.32 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3714 independent reflections
Radiation source: fine-focus sealed tube2251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1615
Tmin = 0.914, Tmax = 0.969k = 109
16676 measured reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.048P)2 + 0.3506P]
where P = (Fo2 + 2Fc2)/3
3713 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H23NO2SV = 1510.03 (10) Å3
Mr = 281.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2269 (5) ŵ = 0.21 mm1
b = 7.5818 (3) ÅT = 296 K
c = 16.3045 (6) Å0.43 × 0.32 × 0.15 mm
β = 92.495 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3714 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2251 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.969Rint = 0.040
16676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 0.99Δρmax = 0.23 e Å3
3713 reflectionsΔρmin = 0.25 e Å3
174 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22960 (5)1.10442 (7)0.56680 (3)0.05930 (19)
O10.14930 (14)1.1507 (2)0.50392 (9)0.0866 (5)
O20.32184 (13)1.21640 (19)0.58303 (10)0.0784 (5)
N10.27372 (13)0.9101 (2)0.54440 (9)0.0549 (4)
C10.16215 (14)1.0870 (2)0.66002 (11)0.0451 (4)
C20.21516 (14)1.1373 (2)0.73271 (11)0.0511 (5)
H20.28561.18350.73260.061*
C30.16309 (15)1.1186 (3)0.80559 (12)0.0528 (5)
H30.19941.15190.85440.063*
C40.05847 (15)1.0517 (2)0.80760 (11)0.0491 (5)
C50.00638 (16)1.0042 (3)0.73394 (13)0.0571 (5)
H50.06450.95980.73410.069*
C60.05660 (16)1.0209 (3)0.66051 (12)0.0555 (5)
H60.02010.98810.61170.067*
C70.36213 (15)0.8297 (2)0.59696 (11)0.0494 (5)
H70.39380.92370.63170.059*
C80.45338 (16)0.7582 (3)0.54568 (12)0.0576 (5)
H8A0.42450.66600.50960.069*
H8B0.48080.85210.51180.069*
C90.54647 (16)0.6847 (3)0.59987 (14)0.0671 (6)
H9A0.60190.63580.56570.081*
H9B0.57970.77930.63230.081*
C100.50692 (17)0.5438 (3)0.65621 (13)0.0642 (6)
H10A0.56730.50440.69220.077*
H10B0.48110.44350.62390.077*
C110.4154 (2)0.6108 (3)0.70741 (13)0.0697 (6)
H11A0.44370.70140.74460.084*
H11B0.38830.51480.74020.084*
C120.32174 (16)0.6864 (3)0.65394 (12)0.0606 (5)
H12A0.26700.73550.68870.073*
H12B0.28760.59260.62140.073*
C130.00216 (18)1.0322 (3)0.88731 (13)0.0723 (6)
H13A0.04341.09330.93000.108*
H13B0.00270.90950.90110.108*
H13C0.07011.08150.88170.108*
C140.21331 (17)0.8024 (3)0.48246 (12)0.0608 (5)
H14A0.13570.82630.48550.073*
H14B0.22490.67870.49530.073*
C150.2469 (2)0.8363 (3)0.39659 (13)0.0820 (7)
H15A0.23380.95780.38280.123*
H15B0.20500.76240.35920.123*
H15C0.32330.81040.39270.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0778 (4)0.0485 (3)0.0529 (3)0.0114 (3)0.0175 (2)0.0068 (2)
O10.1182 (13)0.0855 (12)0.0565 (9)0.0423 (10)0.0071 (9)0.0196 (8)
O20.0959 (11)0.0491 (9)0.0935 (11)0.0132 (8)0.0419 (9)0.0031 (8)
N10.0682 (10)0.0513 (10)0.0455 (9)0.0081 (8)0.0054 (7)0.0054 (8)
C10.0487 (10)0.0398 (10)0.0470 (10)0.0075 (8)0.0052 (8)0.0001 (8)
C20.0410 (10)0.0532 (12)0.0591 (12)0.0008 (8)0.0027 (9)0.0036 (9)
C30.0498 (11)0.0590 (12)0.0493 (11)0.0003 (9)0.0015 (8)0.0077 (9)
C40.0537 (11)0.0404 (10)0.0537 (11)0.0041 (8)0.0078 (9)0.0022 (9)
C50.0451 (11)0.0574 (13)0.0692 (14)0.0064 (9)0.0069 (9)0.0074 (10)
C60.0544 (12)0.0569 (12)0.0545 (12)0.0010 (10)0.0049 (9)0.0104 (10)
C70.0611 (11)0.0441 (10)0.0433 (10)0.0015 (9)0.0046 (8)0.0062 (8)
C80.0590 (12)0.0559 (12)0.0593 (12)0.0029 (10)0.0164 (9)0.0029 (10)
C90.0551 (12)0.0620 (14)0.0845 (16)0.0010 (11)0.0058 (11)0.0003 (12)
C100.0640 (13)0.0517 (12)0.0760 (15)0.0047 (10)0.0062 (11)0.0023 (11)
C110.0958 (16)0.0593 (14)0.0543 (12)0.0046 (12)0.0053 (11)0.0072 (11)
C120.0674 (13)0.0616 (13)0.0543 (12)0.0078 (11)0.0207 (10)0.0053 (10)
C130.0765 (15)0.0772 (16)0.0649 (14)0.0025 (12)0.0229 (11)0.0008 (12)
C140.0638 (12)0.0607 (13)0.0576 (12)0.0026 (10)0.0001 (10)0.0015 (10)
C150.0992 (18)0.0938 (19)0.0525 (13)0.0011 (15)0.0013 (12)0.0099 (13)
Geometric parameters (Å, º) top
S1—O21.4272 (16)C8—H8B0.9700
S1—O11.4320 (16)C9—C101.502 (3)
S1—N11.6160 (17)C9—H9A0.9700
S1—C11.7654 (18)C9—H9B0.9700
N1—C141.472 (2)C10—C111.513 (3)
N1—C71.481 (2)C10—H10A0.9700
C1—C21.380 (2)C10—H10B0.9700
C1—C61.385 (3)C11—C121.521 (3)
C2—C31.380 (3)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.378 (3)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.383 (3)C13—H13A0.9600
C4—C131.504 (3)C13—H13B0.9600
C5—C61.375 (3)C13—H13C0.9600
C5—H50.9300C14—C151.498 (3)
C6—H60.9300C14—H14A0.9700
C7—C81.523 (3)C14—H14B0.9700
C7—C121.525 (3)C15—H15A0.9600
C7—H70.9800C15—H15B0.9600
C8—C91.517 (3)C15—H15C0.9600
C8—H8A0.9700
O2—S1—O1119.90 (11)C8—C9—H9A109.4
O2—S1—N1108.38 (9)C10—C9—H9B109.4
O1—S1—N1106.68 (9)C8—C9—H9B109.4
O2—S1—C1106.25 (9)H9A—C9—H9B108.0
O1—S1—C1107.65 (9)C9—C10—C11111.34 (18)
N1—S1—C1107.42 (8)C9—C10—H10A109.4
C14—N1—C7120.00 (16)C11—C10—H10A109.4
C14—N1—S1119.89 (13)C9—C10—H10B109.4
C7—N1—S1119.14 (12)C11—C10—H10B109.4
C2—C1—C6119.88 (17)H10A—C10—H10B108.0
C2—C1—S1119.95 (14)C10—C11—C12111.52 (17)
C6—C1—S1120.16 (15)C10—C11—H11A109.3
C3—C2—C1119.63 (17)C12—C11—H11A109.3
C3—C2—H2120.2C10—C11—H11B109.3
C1—C2—H2120.2C12—C11—H11B109.3
C2—C3—C4121.47 (17)H11A—C11—H11B108.0
C2—C3—H3119.3C11—C12—C7111.20 (17)
C4—C3—H3119.3C11—C12—H12A109.4
C3—C4—C5117.93 (17)C7—C12—H12A109.4
C3—C4—C13121.15 (18)C11—C12—H12B109.4
C5—C4—C13120.93 (18)C7—C12—H12B109.4
C6—C5—C4121.74 (18)H12A—C12—H12B108.0
C6—C5—H5119.1C4—C13—H13A109.5
C4—C5—H5119.1C4—C13—H13B109.5
C5—C6—C1119.34 (18)H13A—C13—H13B109.5
C5—C6—H6120.3C4—C13—H13C109.5
C1—C6—H6120.3H13A—C13—H13C109.5
N1—C7—C8111.26 (15)H13B—C13—H13C109.5
N1—C7—C12113.46 (16)N1—C14—C15113.33 (17)
C8—C7—C12110.21 (16)N1—C14—H14A108.9
N1—C7—H7107.2C15—C14—H14A108.9
C8—C7—H7107.2N1—C14—H14B108.9
C12—C7—H7107.2C15—C14—H14B108.9
C9—C8—C7111.12 (16)H14A—C14—H14B107.7
C9—C8—H8A109.4C14—C15—H15A109.5
C7—C8—H8A109.4C14—C15—H15B109.5
C9—C8—H8B109.4H15A—C15—H15B109.5
C7—C8—H8B109.4C14—C15—H15C109.5
H8A—C8—H8B108.0H15A—C15—H15C109.5
C10—C9—C8111.37 (17)H15B—C15—H15C109.5
C10—C9—H9A109.4
O2—S1—N1—C14144.40 (15)C13—C4—C5—C6179.92 (19)
O1—S1—N1—C1414.01 (17)C4—C5—C6—C10.0 (3)
C1—S1—N1—C14101.19 (15)C2—C1—C6—C50.8 (3)
O2—S1—N1—C746.86 (16)S1—C1—C6—C5178.40 (15)
O1—S1—N1—C7177.24 (14)C14—N1—C7—C860.5 (2)
C1—S1—N1—C767.56 (15)S1—N1—C7—C8130.77 (15)
O2—S1—C1—C215.54 (18)C14—N1—C7—C1264.5 (2)
O1—S1—C1—C2145.16 (16)S1—N1—C7—C12104.27 (17)
N1—S1—C1—C2100.29 (16)N1—C7—C8—C9177.02 (16)
O2—S1—C1—C6165.26 (15)C12—C7—C8—C956.2 (2)
O1—S1—C1—C635.64 (18)C7—C8—C9—C1056.7 (2)
N1—S1—C1—C678.91 (16)C8—C9—C10—C1155.7 (2)
C6—C1—C2—C31.0 (3)C9—C10—C11—C1255.0 (2)
S1—C1—C2—C3178.17 (14)C10—C11—C12—C755.1 (2)
C1—C2—C3—C40.5 (3)N1—C7—C12—C11179.00 (15)
C2—C3—C4—C50.3 (3)C8—C7—C12—C1155.5 (2)
C2—C3—C4—C13179.85 (19)C7—N1—C14—C15103.9 (2)
C3—C4—C5—C60.6 (3)S1—N1—C14—C1587.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.972.663.530 (3)150
C13—H13A···O1ii0.962.603.512 (3)159
Symmetry codes: (i) x, y1, z; (ii) x, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H23NO2S
Mr281.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.2269 (5), 7.5818 (3), 16.3045 (6)
β (°) 92.495 (2)
V3)1510.03 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.43 × 0.32 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.914, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
16676, 3714, 2251
Rint0.040
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.122, 0.99
No. of reflections3713
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.972.663.530 (3)149.5
C13—H13A···O1ii0.962.603.512 (3)158.5
Symmetry codes: (i) x, y1, z; (ii) x, y+5/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant under the `Strengthening of the Materials Chemistry Laboratory' project at GC University, Lahore, Pakistan.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283–o2284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Mubashar-ur-Rehman, H., Khan, I. U., Shafiq, M. & Lo, K. M. (2009). Acta Cryst. E65, o3229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds