organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Di­methyl-o-phenyl­enedi­methanol

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, bLaboratoire de Chimie Organique de Synthese, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium, and cApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 8 December 2009; accepted 11 December 2009; online 19 December 2009)

The title compound, C10H14O2, synthesized by reduction of 4,7-dimethyl-2-benzofuran-1,3-dione, crystallizes with two independant mol­ecules in the asymmetric unit, both showing an intra­molecular O—H⋯O hydrogen bond. The crystal packing is stabilized by O—H⋯O hydrogen bonds.

Related literature

For the influence of chelation to (semi-)metals on the geometry of bifunctional alcohols, see: Klüfers & Vogler (2007[Klüfers, P. & Vogler, C. (2007). Z. Anorg. Allg. Chem. 633, 908-912.]). For a related compound, see: Betz et al. (2009[Betz, R., Klüfers, P. & Mayer, P. (2009). Acta Cryst. E65, o479.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14O2

  • Mr = 166.21

  • Monoclinic, P 21

  • a = 9.5821 (7) Å

  • b = 8.7184 (7) Å

  • c = 11.7522 (9) Å

  • β = 107.810 (4)°

  • V = 934.73 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.33 × 0.10 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.994

  • 10452 measured reflections

  • 2468 independent reflections

  • 1296 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.121

  • S = 0.99

  • 2468 reflections

  • 225 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.89 2.706 (3) 174
O2—H2⋯O1 0.82 1.97 2.713 (4) 151
O3—H3⋯O4ii 0.82 1.90 2.709 (4) 167
O4—H4⋯O3 0.82 1.98 2.717 (4) 150
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z]; (ii) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work regarding the synthesis of various hetrocycles, structure of (3,6-dimethylbenzene-1,2-diyl) dimethanol has been determined. Such diols may act as good ligands for the chelation of (semi-)metals (Klüfers & Vogler, 2007). Bond lengths and bond angles of the title molecule (Scheme 1; Fig. 1) are almost similar to those in the related molecules (Betz et al., 2009).

Methyl groups at C7 & C10 are displaced by 0.71 (2)° and 0.85 (1)°, respectively, from the plane of the aromatic ring. Two independant asymmetric molecules exist in a unit cell and the benzylic oxygen of each molecule is involved in an intramolecular O—H···O hydrogen bond, forming a seven-membered hydrogen-bonded ring. Each molecule is centrosymmetrically linked to their adjacent ones through O—H···O hydrogen bonds (Table 1; Fig. 2).

Related literature top

For the influence of chelation to (semi-)metals on the geometry of bifunctional alcohols, see: Klüfers & Vogler (2007). For a related compound, see: Betz et al. (2009).

Experimental top

A mixture of 4,7-dimethyl-2-benzofuran-1,3-dione (0.176 g; 1.0 mmole), lithium aluminium hydride (0.042; 1.1 mmole), diethyl ether (20 ml) and tetrahydrofuran (20 ml) was refluxed for 15 h. Reaction mixture was than cooled and quenched with ice cooled water followed by the addition of aqueous sodium hydroxide (15%) to make the contents alkaline. Resulting solid was filtered off and washed with ether. Filtrate was concentrated to obtain (3,6-dimethylbenzene-1,2-diyl) dimethanol followed by its purification on silica gel column eluted by 60% diethyl ether in pentane.

Refinement top

All H atoms were identified in a difference map and then were treated as riding (O—H = 0.82, C—H = 0.93 or 0.97 Å), with Uiso(H) = 1.2Ueq(C,O). In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the three-dimensional crystal packing showing hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
3,6-Dimethyl-o-phenylenedimethanol top
Crystal data top
C10H14O2F(000) = 360
Mr = 166.21Dx = 1.181 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1602 reflections
a = 9.5821 (7) Åθ = 3.0–19.6°
b = 8.7184 (7) ŵ = 0.08 mm1
c = 11.7522 (9) ÅT = 296 K
β = 107.810 (4)°Needle, colorless
V = 934.73 (12) Å30.33 × 0.10 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2468 independent reflections
Radiation source: fine-focus sealed tube1296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 712
Tmin = 0.974, Tmax = 0.994k = 1111
10452 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.0276P]
where P = (Fo2 + 2Fc2)/3
2468 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C10H14O2V = 934.73 (12) Å3
Mr = 166.21Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.5821 (7) ŵ = 0.08 mm1
b = 8.7184 (7) ÅT = 296 K
c = 11.7522 (9) Å0.33 × 0.10 × 0.07 mm
β = 107.810 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2468 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1296 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.994Rint = 0.041
10452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.121H-atom parameters constrained
S = 0.99Δρmax = 0.11 e Å3
2468 reflectionsΔρmin = 0.12 e Å3
225 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1958 (4)0.2892 (4)0.2857 (3)0.0643 (10)
C20.2068 (3)0.4103 (4)0.2113 (3)0.0511 (8)
C30.1604 (3)0.5579 (4)0.2305 (2)0.0492 (8)
C40.1010 (3)0.5855 (4)0.3226 (3)0.0587 (9)
C50.0928 (4)0.4638 (5)0.3960 (3)0.0776 (12)
H50.05550.48040.45930.093*
C60.1379 (4)0.3208 (5)0.3776 (3)0.0747 (11)
H60.12970.24180.42830.090*
C70.2426 (5)0.1270 (4)0.2686 (4)0.0982 (14)
H7A0.23430.06350.33290.147*
H7B0.34260.12760.26790.147*
H7C0.18080.08720.19400.147*
C80.2641 (3)0.3817 (4)0.1068 (3)0.0619 (9)
H8A0.34120.45500.10940.074*
H8B0.30630.27970.11370.074*
C90.1713 (3)0.6851 (4)0.1473 (3)0.0590 (8)
H9A0.16530.78290.18490.071*
H9B0.26600.67980.13360.071*
C100.0458 (4)0.7410 (5)0.3464 (4)0.0881 (12)
H10A0.00840.73030.40250.132*
H10B0.01690.78300.27300.132*
H10C0.12750.80840.37880.132*
C110.7091 (4)0.3069 (4)0.2561 (3)0.0623 (9)
C120.7047 (3)0.4486 (3)0.2009 (3)0.0468 (8)
C130.6475 (3)0.5778 (4)0.2417 (2)0.0492 (8)
C140.5941 (4)0.5662 (5)0.3388 (3)0.0637 (9)
C150.6017 (4)0.4238 (6)0.3923 (3)0.0825 (13)
H150.56670.41280.45750.099*
C160.6584 (4)0.2998 (5)0.3527 (3)0.0823 (12)
H160.66300.20690.39260.099*
C170.7680 (5)0.1632 (5)0.2167 (4)0.0967 (13)
H17A0.70700.13500.13830.145*
H17B0.76840.08170.27180.145*
H17C0.86610.18120.21500.145*
C180.7569 (4)0.4641 (4)0.0932 (3)0.0666 (10)
H18A0.82770.54680.10650.080*
H18B0.80600.37010.08300.080*
C190.6393 (4)0.7281 (4)0.1778 (3)0.0647 (9)
H19A0.63000.81080.23020.078*
H19B0.72930.74410.15780.078*
C200.5287 (4)0.7007 (6)0.3852 (3)0.0961 (14)
H20A0.60550.76950.42710.144*
H20B0.47770.66460.43880.144*
H20C0.46140.75360.31950.144*
O10.1514 (2)0.3950 (3)0.00537 (16)0.0669 (7)
H10.08770.33060.00910.100*
O20.0586 (2)0.6779 (3)0.03506 (18)0.0690 (7)
H20.05570.59130.00720.103*
O30.6404 (3)0.4941 (3)0.01344 (18)0.0737 (7)
H30.58280.42190.02750.110*
O40.5173 (2)0.7319 (3)0.07073 (19)0.0743 (7)
H40.53110.67070.02230.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.069 (2)0.057 (2)0.059 (2)0.0083 (18)0.0079 (18)0.0049 (17)
C20.0445 (17)0.059 (2)0.0453 (16)0.0068 (16)0.0071 (14)0.0018 (15)
C30.0408 (17)0.055 (2)0.0472 (16)0.0070 (15)0.0069 (14)0.0022 (15)
C40.0525 (19)0.074 (2)0.0494 (17)0.0070 (17)0.0154 (15)0.0104 (19)
C50.076 (3)0.110 (4)0.054 (2)0.017 (2)0.031 (2)0.009 (2)
C60.088 (3)0.084 (3)0.052 (2)0.018 (2)0.0213 (19)0.012 (2)
C70.127 (4)0.061 (3)0.099 (3)0.002 (2)0.024 (3)0.007 (2)
C80.056 (2)0.069 (2)0.0629 (19)0.0007 (18)0.0216 (17)0.0039 (18)
C90.0588 (19)0.056 (2)0.0604 (18)0.0109 (16)0.0156 (16)0.0021 (16)
C100.088 (3)0.091 (3)0.089 (3)0.003 (2)0.033 (2)0.026 (2)
C110.060 (2)0.058 (2)0.063 (2)0.0066 (17)0.0096 (17)0.0018 (18)
C120.0415 (17)0.051 (2)0.0468 (16)0.0064 (14)0.0112 (14)0.0044 (14)
C130.0426 (17)0.056 (2)0.0446 (16)0.0077 (15)0.0077 (14)0.0071 (15)
C140.054 (2)0.086 (3)0.0487 (17)0.007 (2)0.0122 (16)0.017 (2)
C150.084 (3)0.119 (4)0.051 (2)0.019 (3)0.030 (2)0.012 (2)
C160.094 (3)0.077 (3)0.069 (2)0.016 (2)0.016 (2)0.018 (2)
C170.099 (3)0.060 (3)0.119 (3)0.009 (2)0.016 (2)0.006 (2)
C180.061 (2)0.081 (3)0.0633 (19)0.0088 (19)0.0273 (18)0.0105 (18)
C190.062 (2)0.057 (2)0.067 (2)0.0059 (17)0.0078 (17)0.0033 (17)
C200.079 (3)0.131 (4)0.078 (2)0.002 (3)0.024 (2)0.039 (3)
O10.0763 (16)0.0749 (17)0.0522 (12)0.0081 (13)0.0237 (12)0.0041 (11)
O20.0688 (14)0.0659 (15)0.0631 (13)0.0045 (12)0.0067 (11)0.0110 (12)
O30.0899 (19)0.0789 (17)0.0551 (13)0.0164 (14)0.0266 (13)0.0036 (12)
O40.0759 (15)0.0693 (16)0.0693 (14)0.0096 (12)0.0097 (13)0.0111 (12)
Geometric parameters (Å, º) top
C1—C61.384 (5)C11—C171.504 (5)
C1—C21.396 (5)C12—C131.400 (4)
C1—C71.515 (5)C12—C181.503 (4)
C2—C31.402 (5)C13—C141.390 (5)
C2—C81.512 (4)C13—C191.500 (5)
C3—C41.389 (4)C14—C151.384 (6)
C3—C91.503 (4)C14—C201.508 (6)
C4—C51.385 (5)C15—C161.355 (6)
C4—C101.512 (5)C15—H150.9300
C5—C61.358 (6)C16—H160.9300
C5—H50.9300C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C7—H7A0.9600C17—H17C0.9600
C7—H7B0.9600C18—O31.425 (4)
C7—H7C0.9600C18—H18A0.9700
C8—O11.431 (3)C18—H18B0.9700
C8—H8A0.9700C19—O41.432 (3)
C8—H8B0.9700C19—H19A0.9700
C9—O21.428 (3)C19—H19B0.9700
C9—H9A0.9700C20—H20A0.9600
C9—H9B0.9700C20—H20B0.9600
C10—H10A0.9600C20—H20C0.9600
C10—H10B0.9600O1—H10.8200
C10—H10C0.9600O2—H20.8200
C11—C161.366 (5)O3—H30.8200
C11—C121.391 (4)O4—H40.8200
C6—C1—C2117.6 (3)C12—C11—C17123.8 (3)
C6—C1—C7119.7 (3)C11—C12—C13120.9 (3)
C2—C1—C7122.7 (3)C11—C12—C18120.2 (3)
C1—C2—C3120.3 (3)C13—C12—C18118.8 (3)
C1—C2—C8120.1 (3)C14—C13—C12120.2 (3)
C3—C2—C8119.6 (3)C14—C13—C19119.9 (3)
C4—C3—C2120.7 (3)C12—C13—C19119.8 (3)
C4—C3—C9120.4 (3)C15—C14—C13117.2 (3)
C2—C3—C9119.0 (3)C15—C14—C20120.2 (3)
C5—C4—C3117.9 (3)C13—C14—C20122.6 (4)
C5—C4—C10118.8 (3)C16—C15—C14122.1 (3)
C3—C4—C10123.3 (3)C16—C15—H15119.0
C6—C5—C4121.5 (3)C14—C15—H15119.0
C6—C5—H5119.2C15—C16—C11122.1 (4)
C4—C5—H5119.2C15—C16—H16119.0
C5—C6—C1122.0 (3)C11—C16—H16119.0
C5—C6—H6119.0C11—C17—H17A109.5
C1—C6—H6119.0C11—C17—H17B109.5
C1—C7—H7A109.5H17A—C17—H17B109.5
C1—C7—H7B109.5C11—C17—H17C109.5
H7A—C7—H7B109.5H17A—C17—H17C109.5
C1—C7—H7C109.5H17B—C17—H17C109.5
H7A—C7—H7C109.5O3—C18—C12112.6 (3)
H7B—C7—H7C109.5O3—C18—H18A109.1
O1—C8—C2112.0 (3)C12—C18—H18A109.1
O1—C8—H8A109.2O3—C18—H18B109.1
C2—C8—H8A109.2C12—C18—H18B109.1
O1—C8—H8B109.2H18A—C18—H18B107.8
C2—C8—H8B109.2O4—C19—C13111.3 (2)
H8A—C8—H8B107.9O4—C19—H19A109.4
O2—C9—C3112.7 (2)C13—C19—H19A109.4
O2—C9—H9A109.1O4—C19—H19B109.4
C3—C9—H9A109.1C13—C19—H19B109.4
O2—C9—H9B109.1H19A—C19—H19B108.0
C3—C9—H9B109.1C14—C20—H20A109.5
H9A—C9—H9B107.8C14—C20—H20B109.5
C4—C10—H10A109.5H20A—C20—H20B109.5
C4—C10—H10B109.5C14—C20—H20C109.5
H10A—C10—H10B109.5H20A—C20—H20C109.5
C4—C10—H10C109.5H20B—C20—H20C109.5
H10A—C10—H10C109.5C8—O1—H1109.5
H10B—C10—H10C109.5C9—O2—H2109.5
C16—C11—C12117.4 (3)C18—O3—H3109.5
C16—C11—C17118.7 (3)C19—O4—H4109.5
C6—C1—C2—C30.1 (4)C16—C11—C12—C131.4 (5)
C7—C1—C2—C3179.4 (3)C17—C11—C12—C13179.6 (3)
C6—C1—C2—C8177.9 (3)C16—C11—C12—C18179.2 (3)
C7—C1—C2—C81.4 (5)C17—C11—C12—C181.8 (5)
C1—C2—C3—C41.0 (4)C11—C12—C13—C140.1 (4)
C8—C2—C3—C4177.0 (3)C18—C12—C13—C14178.0 (3)
C1—C2—C3—C9178.9 (3)C11—C12—C13—C19177.9 (3)
C8—C2—C3—C90.9 (4)C18—C12—C13—C190.0 (4)
C2—C3—C4—C51.6 (4)C12—C13—C14—C150.6 (4)
C9—C3—C4—C5179.5 (3)C19—C13—C14—C15178.6 (3)
C2—C3—C4—C10178.6 (3)C12—C13—C14—C20178.9 (3)
C9—C3—C4—C100.7 (5)C19—C13—C14—C200.9 (5)
C3—C4—C5—C61.5 (5)C13—C14—C15—C160.0 (5)
C10—C4—C5—C6178.7 (4)C20—C14—C15—C16179.5 (4)
C4—C5—C6—C10.7 (6)C14—C15—C16—C111.3 (6)
C2—C1—C6—C50.0 (5)C12—C11—C16—C152.0 (6)
C7—C1—C6—C5179.2 (4)C17—C11—C16—C15179.0 (4)
C1—C2—C8—O1109.7 (3)C11—C12—C18—O3110.9 (3)
C3—C2—C8—O168.3 (4)C13—C12—C18—O367.0 (4)
C4—C3—C9—O2101.5 (3)C14—C13—C19—O499.6 (3)
C2—C3—C9—O276.5 (3)C12—C13—C19—O478.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.892.706 (3)174
O2—H2···O10.821.972.713 (4)151
O3—H3···O4ii0.821.902.709 (4)167
O4—H4···O30.821.982.717 (4)150
Symmetry codes: (i) x, y1/2, z; (ii) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formulaC10H14O2
Mr166.21
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)9.5821 (7), 8.7184 (7), 11.7522 (9)
β (°) 107.810 (4)
V3)934.73 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.33 × 0.10 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.974, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
10452, 2468, 1296
Rint0.041
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.121, 0.99
No. of reflections2468
No. of parameters225
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.12

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.82001.89002.706 (3)174.00
O2—H2···O10.82001.97002.713 (4)151.00
O3—H3···O4ii0.82001.90002.709 (4)167.00
O4—H4···O30.82001.98002.717 (4)150.00
Symmetry codes: (i) x, y1/2, z; (ii) x+1, y1/2, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for the X-ray analysis.

References

First citationBetz, R., Klüfers, P. & Mayer, P. (2009). Acta Cryst. E65, o479.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKlüfers, P. & Vogler, C. (2007). Z. Anorg. Allg. Chem. 633, 908–912.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds