organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-3-hy­droxy­methyl-7,8-di­methyl­quinoline

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 December 2009; accepted 15 December 2009; online 19 December 2009)

All non-H atoms of the title compound, C12H12ClNO, are co-planar (r.m.s. deviation = 0.055 Å). The hydr­oxy H atom is disordered over two positions of equal occupancy. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, generating zigzag chains running along the b axis.

Related literature

Substituted quinoline-3-carbaldehydes are inter­mediates for annelation and functional group modification; for a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993[Meth-Cohn, O. (1993). Heterocycles, 35, 539-557.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12ClNO

  • Mr = 221.68

  • Monoclinic, P 21 /c

  • a = 17.4492 (12) Å

  • b = 4.6271 (2) Å

  • c = 14.3773 (7) Å

  • β = 113.297 (7)°

  • V = 1066.17 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.38 × 0.15 × 0.06 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.885, Tmax = 0.981

  • 10456 measured reflections

  • 1884 independent reflections

  • 1488 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.094

  • S = 1.05

  • 1884 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1a⋯O1i 0.82 1.91 2.715 (3) 167
O1—H1b⋯O1ii 0.82 1.91 2.720 (3) 168
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

Substituted quinoline-3-carbaldehydes are intermediates for annelation and functional group modification; for a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Experimental top

2-Chloro-7,8-dimethylquinoline-3-carbaldehyde (220 mg, 1 mmol), sodium borohydride (38 mg, 1 mmol) and catalytic amount of montmorillonite K-10 were placed in a beaker. The contents were irradiated at 500 W for 5 min. The product was dissolved in ethyl acetate and the residue removed by filtration. The filtrate was subjected to column chromatography on silica, and ethyl acetate/petroleum ether was used as the eluant. The solvent was evaporated and the residue recrystallized from chloroform to give colorless crystals.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93–0.97, O–H 0.82 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,O). The methyl H-atoms were refined as disordered over two equally occupied sites. The hydroxy H-atom is also disordered over two positions with equal site occupancy.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C12H12ClNO at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Chloro-3-hydroxymethyl-7,8-dimethylquinoline top
Crystal data top
C12H12ClNOF(000) = 464
Mr = 221.68Dx = 1.381 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 963 reflections
a = 17.4492 (12) Åθ = 3.1–25.0°
b = 4.6271 (2) ŵ = 0.33 mm1
c = 14.3773 (7) ÅT = 293 K
β = 113.297 (7)°Plate, colorless
V = 1066.17 (10) Å30.38 × 0.15 × 0.06 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
1884 independent reflections
Radiation source: fine-focus sealed tube1488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.885, Tmax = 0.981k = 55
10456 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.1434P]
where P = (Fo2 + 2Fc2)/3
1884 reflections(Δ/σ)max = 0.001
139 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H12ClNOV = 1066.17 (10) Å3
Mr = 221.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.4492 (12) ŵ = 0.33 mm1
b = 4.6271 (2) ÅT = 293 K
c = 14.3773 (7) Å0.38 × 0.15 × 0.06 mm
β = 113.297 (7)°
Data collection top
Bruker SMART area-detector
diffractometer
1884 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1488 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.981Rint = 0.033
10456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
1884 reflectionsΔρmin = 0.22 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.37792 (3)0.62190 (11)0.12385 (3)0.0547 (2)
O10.46228 (9)0.7503 (3)0.45560 (9)0.0578 (4)
H1A0.48920.89910.47630.087*0.50
H1B0.49140.61020.48240.087*0.50
N10.27105 (9)0.2833 (3)0.15172 (10)0.0365 (3)
C10.33144 (11)0.4587 (4)0.19891 (12)0.0361 (4)
C20.36337 (11)0.5327 (3)0.30325 (12)0.0365 (4)
C30.32309 (11)0.4071 (3)0.35710 (12)0.0381 (4)
H30.34030.44930.42560.046*
C40.25620 (10)0.2154 (4)0.31127 (12)0.0349 (4)
C50.21258 (12)0.0807 (4)0.36385 (13)0.0427 (5)
H50.22730.11860.43230.051*
C60.14924 (12)0.1037 (4)0.31451 (13)0.0440 (5)
H60.12100.18990.35020.053*
C70.12436 (11)0.1703 (4)0.21072 (13)0.0398 (4)
C80.16551 (11)0.0432 (4)0.15657 (12)0.0370 (4)
C90.23169 (10)0.1536 (3)0.20687 (12)0.0333 (4)
C100.43655 (11)0.7321 (4)0.34903 (13)0.0454 (5)
H10A0.48250.66230.33340.054*
H10B0.42150.92310.31960.054*
C110.05264 (12)0.3765 (4)0.16298 (16)0.0558 (5)
H11A0.05100.43930.09860.084*0.50
H11B0.00130.28090.15350.084*0.50
H11C0.05990.54090.20640.084*0.50
H11D0.02380.40150.20710.084*0.50
H11E0.07350.55980.15210.084*0.50
H11F0.01490.29980.09930.084*0.50
C120.14234 (13)0.1070 (4)0.04636 (13)0.0516 (5)
H12A0.19100.16940.03630.077*0.50
H12B0.12030.06440.00730.077*0.50
H12C0.10090.25680.02500.077*0.50
H12D0.08380.07180.00950.077*0.50
H12E0.15450.30560.03840.077*0.50
H12F0.17390.01560.02070.077*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0522 (3)0.0662 (4)0.0492 (3)0.0064 (2)0.0237 (2)0.0071 (2)
O10.0632 (9)0.0508 (8)0.0438 (7)0.0109 (7)0.0045 (6)0.0114 (6)
N10.0374 (9)0.0395 (8)0.0307 (7)0.0031 (7)0.0116 (6)0.0004 (6)
C10.0360 (10)0.0362 (10)0.0357 (9)0.0056 (8)0.0138 (8)0.0032 (7)
C20.0369 (10)0.0313 (9)0.0366 (9)0.0060 (8)0.0094 (8)0.0016 (7)
C30.0420 (11)0.0384 (10)0.0283 (8)0.0051 (8)0.0078 (7)0.0053 (7)
C40.0375 (10)0.0344 (9)0.0308 (8)0.0068 (8)0.0113 (7)0.0004 (7)
C50.0478 (11)0.0506 (12)0.0310 (9)0.0050 (9)0.0169 (8)0.0009 (8)
C60.0431 (11)0.0482 (11)0.0438 (10)0.0061 (9)0.0203 (8)0.0099 (8)
C70.0345 (10)0.0368 (10)0.0439 (10)0.0062 (8)0.0110 (8)0.0054 (8)
C80.0370 (10)0.0361 (10)0.0320 (9)0.0055 (8)0.0075 (7)0.0004 (7)
C90.0351 (10)0.0335 (9)0.0293 (8)0.0060 (8)0.0105 (7)0.0007 (7)
C100.0448 (12)0.0382 (10)0.0463 (10)0.0017 (9)0.0107 (8)0.0033 (8)
C110.0454 (12)0.0536 (13)0.0631 (13)0.0041 (10)0.0157 (10)0.0039 (10)
C120.0547 (13)0.0576 (13)0.0342 (9)0.0056 (10)0.0087 (9)0.0064 (8)
Geometric parameters (Å, º) top
Cl1—C11.7563 (17)C7—C111.506 (3)
O1—C101.418 (2)C8—C91.423 (2)
O1—H1A0.8200C8—C121.501 (2)
O1—H1B0.8200C10—H10A0.9700
N1—C11.290 (2)C10—H10B0.9700
N1—C91.375 (2)C11—H11A0.9600
C1—C21.420 (2)C11—H11B0.9600
C2—C31.364 (2)C11—H11C0.9600
C2—C101.500 (2)C11—H11D0.9600
C3—C41.405 (2)C11—H11E0.9600
C3—H30.9300C11—H11F0.9600
C4—C51.412 (2)C12—H12A0.9600
C4—C91.418 (2)C12—H12B0.9600
C5—C61.354 (3)C12—H12C0.9600
C5—H50.9300C12—H12D0.9600
C6—C71.413 (2)C12—H12E0.9600
C6—H60.9300C12—H12F0.9600
C7—C81.382 (2)
C10—O1—H1A109.5O1—C10—C2111.18 (14)
C10—O1—H1B109.5O1—C10—H10A109.4
C1—N1—C9117.49 (14)C2—C10—H10A109.4
N1—C1—C2127.22 (15)O1—C10—H10B109.4
N1—C1—Cl1115.28 (12)C2—C10—H10B109.4
C2—C1—Cl1117.51 (13)H10A—C10—H10B108.0
C3—C2—C1114.95 (16)C7—C11—H11A109.5
C3—C2—C10123.59 (15)C7—C11—H11B109.5
C1—C2—C10121.46 (15)H11A—C11—H11B109.5
C2—C3—C4121.44 (15)C7—C11—H11C109.5
C2—C3—H3119.3H11A—C11—H11C109.5
C4—C3—H3119.3H11B—C11—H11C109.5
C3—C4—C5123.44 (15)C7—C11—H11D109.5
C3—C4—C9118.06 (15)C7—C11—H11E109.5
C5—C4—C9118.49 (16)H11D—C11—H11E109.5
C6—C5—C4119.92 (16)C7—C11—H11F109.5
C6—C5—H5120.0H11D—C11—H11F109.5
C4—C5—H5120.0H11E—C11—H11F109.5
C5—C6—C7122.47 (16)C8—C12—H12A109.5
C5—C6—H6118.8C8—C12—H12B109.5
C7—C6—H6118.8H12A—C12—H12B109.5
C8—C7—C6119.41 (16)C8—C12—H12C109.5
C8—C7—C11122.41 (16)H12A—C12—H12C109.5
C6—C7—C11118.17 (16)H12B—C12—H12C109.5
C7—C8—C9118.95 (15)C8—C12—H12D109.5
C7—C8—C12121.87 (16)C8—C12—H12E109.5
C9—C8—C12119.19 (15)H12D—C12—H12E109.5
N1—C9—C4120.81 (15)C8—C12—H12F109.5
N1—C9—C8118.43 (14)H12D—C12—H12F109.5
C4—C9—C8120.75 (15)H12E—C12—H12F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1a···O1i0.821.912.715 (3)167
O1—H1b···O1ii0.821.912.720 (3)168
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H12ClNO
Mr221.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.4492 (12), 4.6271 (2), 14.3773 (7)
β (°) 113.297 (7)
V3)1066.17 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.38 × 0.15 × 0.06
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.885, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
10456, 1884, 1488
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.05
No. of reflections1884
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.22

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1a···O1i0.821.912.715 (3)167
O1—H1b···O1ii0.821.912.720 (3)168
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the diffraction facility at IISc under the IRHPA–DST program. FNK thanks the DST for Fast Track Proposal funding. We also thank VIT University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMeth-Cohn, O. (1993). Heterocycles, 35, 539–557.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds