organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,4-Di­chloro­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 17 December 2009; accepted 17 December 2009; online 24 December 2009)

The title compound, C12H9Cl2NO2S, crystallizes with two independent mol­ecules in the asymmetric unit. The dihedral angles between the two aromatic rings are 70.8 (1) and 74.8 (1)° for the two mol­ecules. The crystal structure features dimers made up of one each of the two asymmetric molecules linked by pairs of N—H⋯O hydrogen bonds. An intra­molecular N—H⋯Cl hydrogen bond is also observed in both mol­ecules.

Related literature

For the preparation of the title compound, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]). For our study of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o2190.]; 2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o190.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9Cl2NO2S

  • Mr = 302.16

  • Monoclinic, P 21 /c

  • a = 8.2428 (6) Å

  • b = 19.473 (1) Å

  • c = 16.873 (1) Å

  • β = 103.317 (7)°

  • V = 2635.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 299 K

  • 0.50 × 0.24 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.740, Tmax = 0.915

  • 17396 measured reflections

  • 4807 independent reflections

  • 3444 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.106

  • S = 1.08

  • 4807 reflections

  • 331 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.85 (1) 2.19 (1) 3.015 (3) 165 (3)
N1—H1N⋯Cl1 0.85 (1) 2.60 (3) 2.998 (3) 110 (2)
N2—H2N⋯O2 0.85 (1) 2.38 (2) 3.192 (4) 160 (3)
N2—H2N⋯Cl3 0.85 (1) 2.55 (3) 2.996 (3) 113 (3)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

In the present work, as part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2008; Gowda et al., 2010), the structure of N-(2,4-Dichlorophenyl)benzenesulfonamide (I) has been determined. The asymmetric unit of the structure contains two independent molecules.

The sulfonyl benzene and the aniline benzene rings in the two molecules of (I) are tilted relative to each other by 70.8 (1)° (molecule 1) and 74.8 (1)° (molecule 2). The other bond parameters in (I) are similar to those observed in other aryl sulfonamides (Gowda et al., 2010; Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, both the intramolecular N—H···Cl and intermolecular N—H···O hydrogen bonds are observed. The pairs of intermolecular N–H···O hydrogen bonds (Table 1) link the molecules through inversion-related dimers (Fig. 2).

Related literature top

For the preparation of the compound, see: Shetty & Gowda (2005). For our study of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2008; 2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of benzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with 2,4-dichloroaniline in the stoichiometric amounts and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(2,4-dichlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005). The rod like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by evaporating it at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and refined with a N-H distance restraint of 0.86 (1) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(2,4-Dichlorophenyl)benzenesulfonamide top
Crystal data top
C12H9Cl2NO2SF(000) = 1232
Mr = 302.16Dx = 1.523 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6373 reflections
a = 8.2428 (6) Åθ = 2.4–28.2°
b = 19.473 (1) ŵ = 0.64 mm1
c = 16.873 (1) ÅT = 299 K
β = 103.317 (7)°Rod, colourless
V = 2635.5 (3) Å30.50 × 0.24 × 0.14 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4807 independent reflections
Radiation source: fine-focus sealed tube3444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Rotation method data acquisition using ω and phi scansθmax = 25.4°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 98
Tmin = 0.740, Tmax = 0.915k = 2320
17396 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0259P)2 + 2.4186P]
where P = (Fo2 + 2Fc2)/3
4807 reflections(Δ/σ)max = 0.003
331 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
C12H9Cl2NO2SV = 2635.5 (3) Å3
Mr = 302.16Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.2428 (6) ŵ = 0.64 mm1
b = 19.473 (1) ÅT = 299 K
c = 16.873 (1) Å0.50 × 0.24 × 0.14 mm
β = 103.317 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4807 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3444 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.915Rint = 0.029
17396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.29 e Å3
4807 reflectionsΔρmin = 0.27 e Å3
331 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07684 (12)0.41223 (4)0.39801 (6)0.0729 (3)
Cl20.12156 (15)0.68538 (5)0.42889 (7)0.0901 (3)
S10.18167 (10)0.41573 (4)0.15935 (5)0.0567 (2)
O10.2392 (3)0.47082 (13)0.11774 (14)0.0746 (7)
O20.2379 (3)0.34755 (12)0.14983 (14)0.0769 (7)
N10.2373 (3)0.43048 (13)0.25698 (15)0.0548 (6)
H1N0.235 (4)0.3935 (10)0.2832 (17)0.066*
C10.0361 (4)0.41698 (16)0.13336 (17)0.0509 (7)
C20.1220 (5)0.3600 (2)0.1486 (2)0.0739 (10)
H20.06500.32120.17220.089*
C30.2925 (6)0.3610 (3)0.1289 (3)0.0982 (14)
H30.35180.32250.13870.118*
C40.3756 (5)0.4182 (4)0.0949 (3)0.1036 (17)
H40.49150.41850.08220.124*
C50.2897 (6)0.4757 (3)0.0791 (2)0.0952 (14)
H50.34760.51440.05570.114*
C60.1185 (5)0.47538 (19)0.0982 (2)0.0706 (10)
H60.05910.51360.08780.085*
C70.2003 (3)0.49219 (15)0.29451 (17)0.0478 (7)
C80.1319 (4)0.49032 (15)0.36246 (18)0.0490 (7)
C90.1073 (4)0.54913 (16)0.40335 (19)0.0572 (8)
H90.06320.54670.44930.069*
C100.1487 (4)0.61158 (16)0.3756 (2)0.0595 (8)
C110.2117 (5)0.61546 (17)0.3073 (2)0.0692 (10)
H110.23590.65800.28780.083*
C120.2390 (4)0.55639 (17)0.2676 (2)0.0655 (9)
H120.28420.55940.22200.079*
Cl30.36502 (15)0.20468 (5)0.06873 (6)0.0908 (3)
Cl40.40560 (13)0.07047 (5)0.08844 (6)0.0814 (3)
S20.31006 (11)0.21769 (4)0.32166 (5)0.0617 (2)
O30.2519 (3)0.16658 (13)0.36835 (14)0.0768 (7)
O40.2532 (3)0.28666 (12)0.32451 (15)0.0851 (8)
N20.2533 (4)0.19672 (14)0.22530 (17)0.0633 (7)
H2N0.261 (4)0.2319 (11)0.1965 (18)0.076*
C130.5279 (4)0.21634 (15)0.34783 (18)0.0530 (8)
C140.6093 (5)0.1640 (2)0.3963 (2)0.0707 (10)
H140.54920.12930.41450.085*
C150.7802 (6)0.1639 (3)0.4173 (3)0.1001 (15)
H150.83720.12890.44970.120*
C160.8680 (6)0.2161 (4)0.3898 (3)0.1076 (18)
H160.98390.21680.40480.129*
C170.7841 (7)0.2664 (3)0.3409 (3)0.1026 (15)
H170.84370.30070.32170.123*
C180.6148 (5)0.26737 (18)0.3197 (2)0.0775 (11)
H180.55870.30210.28650.093*
C190.2931 (4)0.13263 (16)0.19385 (19)0.0546 (8)
C200.3432 (4)0.12956 (16)0.1208 (2)0.0595 (8)
C210.3763 (4)0.06739 (17)0.0877 (2)0.0638 (9)
H210.40810.06610.03830.077*
C220.3616 (4)0.00774 (16)0.1289 (2)0.0610 (8)
C230.3133 (4)0.00912 (18)0.2012 (2)0.0689 (9)
H230.30510.03150.22890.083*
C240.2771 (4)0.07091 (18)0.2327 (2)0.0678 (9)
H240.24120.07140.28110.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0987 (7)0.0494 (5)0.0798 (6)0.0115 (4)0.0397 (5)0.0012 (4)
Cl20.1147 (8)0.0507 (5)0.0958 (7)0.0072 (5)0.0053 (6)0.0148 (5)
S10.0551 (5)0.0656 (5)0.0520 (5)0.0121 (4)0.0177 (4)0.0008 (4)
O10.0718 (16)0.0927 (18)0.0660 (15)0.0021 (13)0.0298 (13)0.0118 (13)
O20.0847 (17)0.0774 (16)0.0708 (15)0.0323 (13)0.0222 (13)0.0079 (13)
N10.0551 (16)0.0541 (16)0.0532 (16)0.0088 (13)0.0082 (13)0.0053 (12)
C10.0545 (19)0.0586 (19)0.0400 (16)0.0047 (15)0.0118 (14)0.0060 (14)
C20.073 (3)0.077 (3)0.072 (2)0.010 (2)0.016 (2)0.0035 (19)
C30.079 (3)0.135 (4)0.080 (3)0.033 (3)0.017 (2)0.005 (3)
C40.051 (3)0.192 (6)0.068 (3)0.002 (3)0.015 (2)0.030 (3)
C50.076 (3)0.127 (4)0.075 (3)0.040 (3)0.002 (2)0.010 (3)
C60.070 (3)0.075 (2)0.063 (2)0.0159 (19)0.0080 (18)0.0001 (18)
C70.0406 (16)0.0490 (17)0.0489 (17)0.0036 (13)0.0005 (13)0.0017 (14)
C80.0453 (17)0.0469 (17)0.0531 (18)0.0034 (13)0.0074 (14)0.0021 (14)
C90.059 (2)0.0536 (19)0.0576 (19)0.0005 (15)0.0108 (16)0.0031 (15)
C100.060 (2)0.0493 (18)0.061 (2)0.0019 (15)0.0032 (16)0.0017 (15)
C110.083 (3)0.0471 (19)0.071 (2)0.0058 (17)0.005 (2)0.0095 (17)
C120.074 (2)0.064 (2)0.058 (2)0.0045 (17)0.0152 (18)0.0104 (17)
Cl30.1349 (10)0.0616 (6)0.0874 (7)0.0052 (6)0.0490 (7)0.0099 (5)
Cl40.0930 (7)0.0606 (5)0.0820 (6)0.0015 (5)0.0025 (5)0.0108 (5)
S20.0679 (6)0.0615 (5)0.0598 (5)0.0156 (4)0.0229 (4)0.0039 (4)
O30.0781 (17)0.0868 (17)0.0751 (16)0.0024 (13)0.0372 (13)0.0106 (13)
O40.110 (2)0.0681 (16)0.0819 (17)0.0393 (15)0.0314 (15)0.0032 (13)
N20.0685 (19)0.0600 (18)0.0595 (17)0.0116 (15)0.0109 (14)0.0104 (14)
C130.068 (2)0.0483 (17)0.0463 (17)0.0016 (15)0.0202 (15)0.0071 (14)
C140.068 (3)0.084 (3)0.061 (2)0.010 (2)0.0156 (18)0.0069 (19)
C150.076 (3)0.145 (4)0.073 (3)0.030 (3)0.005 (2)0.009 (3)
C160.058 (3)0.175 (6)0.090 (3)0.012 (3)0.017 (3)0.057 (4)
C170.099 (4)0.107 (4)0.110 (4)0.045 (3)0.040 (3)0.039 (3)
C180.092 (3)0.059 (2)0.086 (3)0.015 (2)0.029 (2)0.0129 (19)
C190.0486 (19)0.0563 (19)0.0548 (19)0.0012 (15)0.0034 (15)0.0011 (15)
C200.059 (2)0.056 (2)0.061 (2)0.0044 (16)0.0083 (16)0.0056 (16)
C210.065 (2)0.065 (2)0.061 (2)0.0037 (17)0.0136 (17)0.0050 (17)
C220.058 (2)0.054 (2)0.063 (2)0.0016 (16)0.0013 (17)0.0025 (16)
C230.081 (3)0.057 (2)0.064 (2)0.0058 (18)0.0058 (19)0.0079 (17)
C240.076 (2)0.069 (2)0.059 (2)0.0018 (18)0.0139 (18)0.0061 (18)
Geometric parameters (Å, º) top
Cl1—C81.733 (3)Cl3—C201.737 (3)
Cl2—C101.737 (3)Cl4—C221.741 (3)
S1—O11.422 (2)S2—O31.419 (2)
S1—O21.428 (2)S2—O41.427 (2)
S1—N11.631 (3)S2—N21.637 (3)
S1—C11.747 (3)S2—C131.747 (3)
N1—C71.424 (4)N2—C191.424 (4)
N1—H1N0.847 (10)N2—H2N0.851 (10)
C1—C21.372 (4)C13—C181.373 (4)
C1—C61.386 (4)C13—C141.381 (4)
C2—C31.367 (5)C14—C151.371 (5)
C2—H20.9300C14—H140.9300
C3—C41.362 (6)C15—C161.388 (7)
C3—H30.9300C15—H150.9300
C4—C51.384 (7)C16—C171.363 (7)
C4—H40.9300C16—H160.9300
C5—C61.373 (5)C17—C181.358 (6)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—H180.9300
C7—C81.390 (4)C19—C201.389 (4)
C7—C121.392 (4)C19—C241.390 (4)
C8—C91.376 (4)C20—C211.386 (4)
C9—C101.374 (4)C21—C221.373 (4)
C9—H90.9300C21—H210.9300
C10—C111.370 (5)C22—C231.368 (5)
C11—C121.376 (5)C23—C241.376 (5)
C11—H110.9300C23—H230.9300
C12—H120.9300C24—H240.9300
O1—S1—O2119.49 (15)O3—S2—O4119.04 (16)
O1—S1—N1108.53 (15)O3—S2—N2108.69 (15)
O2—S1—N1104.74 (14)O4—S2—N2104.32 (15)
O1—S1—C1107.80 (15)O3—S2—C13107.94 (15)
O2—S1—C1109.05 (15)O4—S2—C13109.40 (16)
N1—S1—C1106.55 (14)N2—S2—C13106.83 (14)
C7—N1—S1124.0 (2)C19—N2—S2123.4 (2)
C7—N1—H1N117 (2)C19—N2—H2N116 (2)
S1—N1—H1N110 (2)S2—N2—H2N109 (2)
C2—C1—C6121.3 (3)C18—C13—C14121.2 (3)
C2—C1—S1119.1 (3)C18—C13—S2119.3 (3)
C6—C1—S1119.5 (3)C14—C13—S2119.4 (3)
C3—C2—C1119.3 (4)C15—C14—C13118.9 (4)
C3—C2—H2120.4C15—C14—H14120.5
C1—C2—H2120.4C13—C14—H14120.5
C4—C3—C2120.2 (4)C14—C15—C16119.8 (5)
C4—C3—H3119.9C14—C15—H15120.1
C2—C3—H3119.9C16—C15—H15120.1
C3—C4—C5120.8 (4)C17—C16—C15119.9 (4)
C3—C4—H4119.6C17—C16—H16120.1
C5—C4—H4119.6C15—C16—H16120.1
C6—C5—C4119.7 (4)C18—C17—C16121.1 (5)
C6—C5—H5120.2C18—C17—H17119.4
C4—C5—H5120.2C16—C17—H17119.4
C5—C6—C1118.7 (4)C17—C18—C13119.1 (4)
C5—C6—H6120.7C17—C18—H18120.5
C1—C6—H6120.7C13—C18—H18120.5
C8—C7—C12117.4 (3)C20—C19—C24117.5 (3)
C8—C7—N1120.9 (3)C20—C19—N2120.7 (3)
C12—C7—N1121.6 (3)C24—C19—N2121.8 (3)
C9—C8—C7121.8 (3)C21—C20—C19121.4 (3)
C9—C8—Cl1118.4 (2)C21—C20—Cl3118.6 (3)
C7—C8—Cl1119.8 (2)C19—C20—Cl3119.9 (3)
C10—C9—C8119.3 (3)C22—C21—C20119.1 (3)
C10—C9—H9120.4C22—C21—H21120.4
C8—C9—H9120.4C20—C21—H21120.4
C11—C10—C9120.5 (3)C23—C22—C21120.8 (3)
C11—C10—Cl2120.6 (3)C23—C22—Cl4119.8 (3)
C9—C10—Cl2118.9 (3)C21—C22—Cl4119.4 (3)
C10—C11—C12120.0 (3)C22—C23—C24119.7 (3)
C10—C11—H11120.0C22—C23—H23120.2
C12—C11—H11120.0C24—C23—H23120.2
C11—C12—C7121.1 (3)C23—C24—C19121.4 (3)
C11—C12—H12119.5C23—C24—H24119.3
C7—C12—H12119.5C19—C24—H24119.3
O1—S1—N1—C753.7 (3)O3—S2—N2—C1955.5 (3)
O2—S1—N1—C7177.6 (2)O4—S2—N2—C19176.5 (3)
C1—S1—N1—C762.1 (3)C13—S2—N2—C1960.7 (3)
O1—S1—C1—C2163.9 (2)O3—S2—C13—C18170.9 (3)
O2—S1—C1—C232.8 (3)O4—S2—C13—C1840.0 (3)
N1—S1—C1—C279.8 (3)N2—S2—C13—C1872.4 (3)
O1—S1—C1—C616.4 (3)O3—S2—C13—C149.2 (3)
O2—S1—C1—C6147.6 (2)O4—S2—C13—C14140.1 (3)
N1—S1—C1—C699.9 (3)N2—S2—C13—C14107.5 (3)
C6—C1—C2—C30.1 (5)C18—C13—C14—C150.9 (5)
S1—C1—C2—C3179.5 (3)S2—C13—C14—C15179.2 (3)
C1—C2—C3—C40.4 (6)C13—C14—C15—C160.2 (6)
C2—C3—C4—C50.6 (7)C14—C15—C16—C171.3 (7)
C3—C4—C5—C60.3 (7)C15—C16—C17—C181.5 (7)
C4—C5—C6—C10.2 (6)C16—C17—C18—C130.4 (6)
C2—C1—C6—C50.4 (5)C14—C13—C18—C170.8 (5)
S1—C1—C6—C5179.2 (3)S2—C13—C18—C17179.3 (3)
S1—N1—C7—C8131.2 (3)S2—N2—C19—C20138.3 (3)
S1—N1—C7—C1252.3 (4)S2—N2—C19—C2444.4 (4)
C12—C7—C8—C91.8 (4)C24—C19—C20—C210.1 (5)
N1—C7—C8—C9174.9 (3)N2—C19—C20—C21177.5 (3)
C12—C7—C8—Cl1178.7 (2)C24—C19—C20—Cl3179.8 (2)
N1—C7—C8—Cl14.6 (4)N2—C19—C20—Cl32.3 (4)
C7—C8—C9—C101.2 (5)C19—C20—C21—C221.0 (5)
Cl1—C8—C9—C10179.4 (2)Cl3—C20—C21—C22179.2 (3)
C8—C9—C10—C110.9 (5)C20—C21—C22—C230.6 (5)
C8—C9—C10—Cl2178.6 (2)C20—C21—C22—Cl4179.2 (2)
C9—C10—C11—C122.2 (5)C21—C22—C23—C240.8 (5)
Cl2—C10—C11—C12177.3 (3)Cl4—C22—C23—C24179.4 (3)
C10—C11—C12—C71.5 (5)C22—C23—C24—C191.9 (5)
C8—C7—C12—C110.5 (5)C20—C19—C24—C231.5 (5)
N1—C7—C12—C11176.2 (3)N2—C19—C24—C23178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.85 (1)2.19 (1)3.015 (3)165 (3)
N1—H1N···Cl10.85 (1)2.60 (3)2.998 (3)110 (2)
N2—H2N···O20.85 (1)2.38 (2)3.192 (4)160 (3)
N2—H2N···Cl30.85 (1)2.55 (3)2.996 (3)113 (3)

Experimental details

Crystal data
Chemical formulaC12H9Cl2NO2S
Mr302.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)8.2428 (6), 19.473 (1), 16.873 (1)
β (°) 103.317 (7)
V3)2635.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.50 × 0.24 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.740, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
17396, 4807, 3444
Rint0.029
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.106, 1.08
No. of reflections4807
No. of parameters331
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.847 (10)2.189 (13)3.015 (3)165 (3)
N1—H1N···Cl10.847 (10)2.60 (3)2.998 (3)110 (2)
N2—H2N···O20.851 (10)2.378 (15)3.192 (4)160 (3)
N2—H2N···Cl30.851 (10)2.55 (3)2.996 (3)113 (3)
 

References

First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o2190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds