organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[2-(2-pyridylsulfan­yl)eth­yl]ammonium perchlorate

aInstitute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China
*Correspondence e-mail: lxf_shmtu@yahoo.com.cn

(Received 4 November 2009; accepted 4 December 2009; online 12 December 2009)

In the title molecular salt, C21H25N4S3+·ClO4, an intra­molecular N—H⋯N hydrogen bond stabilizes the conformation of the cation. The three N—C—C—S torsion angles are 91.7 (2), 100.9 (2) and 167.02 (14)°.

Related literature

For tripodal ligands as recognition reagents towards small mol­ecules or ions, see: Bretonniere et al. (2000[Bretonniere, Y., Mazzanti, M., Wietzke, R. & Pecaut, J. (2000). Chem. Commun. pp. 1543-1544.]). For a benzene-based tripodal oxazoline as an efficient recognition system for some alkyl­ammonium ions for clinical applications, see: Kim & Ahn (2000[Kim, S.-G. & Ahn, K. H. (2000). Chem. Eur. J. 18, 3399-3403.]). For the complexation structures and Ln/An selectivities of tripodal N-donor ligands, see: Wietzke et al. (1998[Wietzke, R., Mazzanti, M., Latour, J.-M., Pecaut, J., Cordier, P.-Y. & Madic, C. (1998). Inorg. Chem. 37, 6690-6697.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25N4S3+·ClO4

  • Mr = 529.08

  • Triclinic, [P \overline 1]

  • a = 8.5480 (7) Å

  • b = 11.9753 (10) Å

  • c = 12.9346 (11) Å

  • α = 110.884 (4)°

  • β = 99.609 (4)°

  • γ = 91.774 (4)°

  • V = 1213.81 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 296 K

  • 0.37 × 0.35 × 0.33 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.846, Tmax = 0.862

  • 6994 measured reflections

  • 4726 independent reflections

  • 3936 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.03

  • 4726 reflections

  • 302 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2 0.85 (2) 1.98 (2) 2.812 (2) 165 (3)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A suitably designed tripodal ligand could be an outstanding recognition reagent towards small molecules or ions (Bretonniere et al., 2000). Kim and Ahn developed a benzene-based tripodal oxazoline as an efficient recognition system for some alkylammonium ions for clinical application (Kim & Ahn, 2000). Wietzke et al. investigated the complexation structures and Ln/An selectivities of tripodal N-donor ligands (Wietzke et al., 1998). To develop a new type of tripodal ligands which could have good selectivity towards transition metal ions, we reported here the synthesis and the crystal structure of the title compound, which comprises discrete ions which are not interconected, so Coulombic interaction to stabilize the crystal structure. The molecular structure is stabilized by one N— H··· N intramolecular hydrogen bond, Fig 1, Table 1. In the tris(2-(pyridin-2-ylthio)ethyl)ammonium cation , the dihedral angles N-C-C-S are: 91.7 (2) (N1/C1/C2/S1); 100.9 (2) (N1/C15/C16/S3) and 167.02 (14)° (N1/C8/C9/S2). The mean planes of the phenyl rings (A: N4-C17/C21; B: N3-C10/C14; C: N2-C3/C7) make dihedral angles of : 23.85 (12) (between A/C); 89.74 (13) (between B/C) and 71.81 (12)° (between A/B).Two O atoms of perchlorate anion are slightly disordered; it was not split intro two positions.

Related literature top

For tripodal ligands as recognition reagents towards small molecules or ions, see: Bretonniere et al. (2000). For a benzene-based tripodal oxazoline as an efficient recognition system for some alkylammonium ions for clinical applications, see: Kim & Ahn (2000). For the complexation structures and Ln/An

selectivities of tripodal N-donor ligands, see: Wietzke et al. (1998).

Experimental top

The title compound was obtained , in an attempts to prepare an coordination compound between tris(2-(pyridin-2-ylthio)ethyl)amine (0.214 g, 0.5 mmol) and Cu(ClO4)2 (0.132 g, 0.5 mmol) using absolute alcohol (6 ml) as solvent . This mixture was stirred in air for 1 h and the colorless crystals were obtained after evaporating for 5 days. Analysis, calculated for C21H25N4O4S3Cl: C 47.67, H 4.76, N 10.59%; found: C 47.31, H 4.25, N 10.96%.

Refinement top

H(1N)-atom was located in a difference Fourier and refined freely. The other H atoms were placed at calculated positions in the riding model approximation (C—H = 0.93 , C—H2 = 0.97 Å), with their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
Tris[2-(2-pyridylsulfanyl)ethyl]ammonium perchlorate top
Crystal data top
C21H25N4S3+·ClO4Z = 2
Mr = 529.08F(000) = 552
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5480 (7) ÅCell parameters from 3657 reflections
b = 11.9753 (10) Åθ = 2.4–28.5°
c = 12.9346 (11) ŵ = 0.45 mm1
α = 110.884 (4)°T = 296 K
β = 99.609 (4)°Block, yellow
γ = 91.774 (4)°0.37 × 0.35 × 0.33 mm
V = 1213.81 (18) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4726 independent reflections
Radiation source: fine-focus sealed tube3936 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.846, Tmax = 0.862k = 1414
6994 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.6528P]
where P = (Fo2 + 2Fc2)/3
4726 reflections(Δ/σ)max = 0.001
302 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C21H25N4S3+·ClO4γ = 91.774 (4)°
Mr = 529.08V = 1213.81 (18) Å3
Triclinic, P1Z = 2
a = 8.5480 (7) ÅMo Kα radiation
b = 11.9753 (10) ŵ = 0.45 mm1
c = 12.9346 (11) ÅT = 296 K
α = 110.884 (4)°0.37 × 0.35 × 0.33 mm
β = 99.609 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
4726 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3936 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.862Rint = 0.010
6994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.50 e Å3
4726 reflectionsΔρmin = 0.43 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6881 (3)0.46034 (19)0.84074 (18)0.0474 (5)
H1A0.57870.47560.82040.057*
H1B0.71810.49410.92230.057*
C20.6983 (3)0.32631 (19)0.80047 (18)0.0496 (5)
H2A0.67850.29880.85950.060*
H2B0.80640.31110.78980.060*
C30.6641 (3)0.24033 (19)0.56478 (18)0.0474 (5)
C40.6269 (3)0.1444 (2)0.4618 (2)0.0632 (6)
H40.55270.08100.45120.076*
C50.7022 (4)0.1453 (2)0.3761 (2)0.0703 (8)
H50.67910.08250.30640.084*
C60.8115 (3)0.2394 (2)0.3942 (2)0.0656 (7)
H60.86430.24150.33750.079*
C70.8414 (3)0.3303 (2)0.49763 (19)0.0569 (6)
H70.91610.39390.50970.068*
C80.9644 (2)0.53834 (19)0.85158 (17)0.0443 (5)
H8A0.98450.47160.87620.053*
H8B0.98140.61150.91810.053*
C91.0806 (3)0.5451 (2)0.77764 (19)0.0532 (5)
H9A1.04680.59920.73940.064*
H9B1.08200.46620.72080.064*
C101.2649 (3)0.7542 (2)0.91802 (19)0.0487 (5)
C111.3855 (3)0.8231 (3)1.0063 (2)0.0660 (7)
H111.47060.78831.03350.079*
C121.3746 (4)0.9446 (3)1.0520 (2)0.0781 (9)
H121.45170.99351.11240.094*
C131.2506 (4)0.9930 (3)1.0086 (2)0.0755 (8)
H131.24211.07521.03800.091*
C141.1389 (3)0.9186 (2)0.9210 (2)0.0643 (6)
H141.05500.95250.89140.077*
C150.7377 (3)0.64094 (18)0.79479 (18)0.0481 (5)
H15A0.82730.69330.79570.058*
H15B0.69800.67840.86390.058*
C160.6077 (3)0.6288 (2)0.6955 (2)0.0555 (6)
H16A0.55020.69980.71500.067*
H16B0.53300.56020.68190.067*
C170.7470 (2)0.75988 (19)0.58998 (17)0.0447 (5)
C180.7867 (3)0.7806 (2)0.49839 (19)0.0523 (5)
H180.77910.71800.42930.063*
C190.8374 (3)0.8954 (2)0.5120 (2)0.0577 (6)
H190.86310.91240.45180.069*
C200.8496 (3)0.9850 (2)0.6158 (2)0.0580 (6)
H200.88481.06360.62760.070*
C210.8088 (3)0.9557 (2)0.7016 (2)0.0565 (6)
H210.81761.01680.77170.068*
Cl10.81316 (7)0.76318 (5)0.16119 (4)0.05665 (17)
N10.7943 (2)0.52226 (15)0.79143 (14)0.0386 (4)
N20.7689 (2)0.33273 (15)0.58241 (14)0.0462 (4)
N31.1428 (2)0.79961 (17)0.87518 (15)0.0518 (4)
N40.7570 (2)0.84479 (16)0.69109 (15)0.0509 (4)
O10.9039 (3)0.73699 (19)0.25035 (17)0.0908 (7)
O20.6898 (4)0.6723 (2)0.0992 (3)0.1414 (12)
O30.9173 (4)0.7694 (3)0.0890 (2)0.1406 (12)
O40.7508 (3)0.87338 (17)0.20429 (19)0.0944 (7)
S10.56374 (8)0.23770 (6)0.67216 (6)0.06351 (19)
S21.27812 (8)0.59780 (6)0.86105 (7)0.0685 (2)
S30.67777 (9)0.61051 (5)0.56746 (5)0.06103 (18)
H1N0.791 (3)0.475 (2)0.724 (2)0.050 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0515 (12)0.0535 (12)0.0436 (11)0.0084 (10)0.0196 (9)0.0205 (9)
C20.0546 (13)0.0534 (12)0.0505 (12)0.0039 (10)0.0125 (10)0.0295 (10)
C30.0491 (12)0.0422 (11)0.0473 (11)0.0100 (9)0.0029 (9)0.0143 (9)
C40.0681 (16)0.0439 (12)0.0605 (15)0.0037 (11)0.0066 (12)0.0071 (11)
C50.0872 (19)0.0593 (15)0.0434 (13)0.0265 (14)0.0040 (13)0.0003 (11)
C60.0836 (18)0.0672 (16)0.0425 (12)0.0241 (14)0.0161 (12)0.0128 (11)
C70.0699 (15)0.0554 (13)0.0446 (12)0.0092 (11)0.0172 (11)0.0144 (10)
C80.0481 (12)0.0448 (11)0.0398 (10)0.0066 (9)0.0090 (9)0.0149 (9)
C90.0572 (13)0.0457 (12)0.0538 (13)0.0053 (10)0.0207 (11)0.0103 (10)
C100.0415 (11)0.0615 (13)0.0503 (12)0.0014 (10)0.0126 (9)0.0276 (10)
C110.0460 (13)0.098 (2)0.0656 (15)0.0117 (13)0.0021 (11)0.0491 (15)
C120.082 (2)0.088 (2)0.0523 (15)0.0362 (17)0.0042 (14)0.0187 (14)
C130.093 (2)0.0581 (16)0.0667 (17)0.0100 (15)0.0238 (16)0.0102 (13)
C140.0744 (17)0.0574 (15)0.0598 (15)0.0143 (13)0.0158 (13)0.0181 (12)
C150.0603 (13)0.0386 (11)0.0450 (11)0.0110 (9)0.0097 (10)0.0144 (9)
C160.0539 (13)0.0546 (13)0.0635 (14)0.0028 (10)0.0041 (11)0.0316 (11)
C170.0435 (11)0.0458 (11)0.0434 (11)0.0053 (9)0.0009 (9)0.0179 (9)
C180.0502 (12)0.0589 (13)0.0450 (12)0.0086 (10)0.0101 (10)0.0151 (10)
C190.0571 (14)0.0680 (15)0.0571 (14)0.0037 (11)0.0174 (11)0.0312 (12)
C200.0588 (14)0.0506 (13)0.0671 (15)0.0020 (11)0.0086 (12)0.0265 (12)
C210.0683 (15)0.0466 (12)0.0492 (12)0.0028 (11)0.0064 (11)0.0137 (10)
Cl10.0721 (4)0.0453 (3)0.0425 (3)0.0206 (3)0.0058 (3)0.0051 (2)
N10.0486 (10)0.0367 (8)0.0307 (8)0.0061 (7)0.0114 (7)0.0107 (7)
N20.0536 (10)0.0424 (9)0.0399 (9)0.0065 (8)0.0100 (8)0.0112 (7)
N30.0539 (11)0.0553 (11)0.0431 (10)0.0090 (9)0.0077 (8)0.0149 (8)
N40.0639 (12)0.0463 (10)0.0417 (9)0.0041 (8)0.0065 (8)0.0166 (8)
O10.1193 (18)0.0864 (14)0.0666 (12)0.0355 (13)0.0050 (12)0.0317 (11)
O20.126 (2)0.0691 (15)0.160 (3)0.0060 (14)0.041 (2)0.0091 (16)
O30.174 (3)0.184 (3)0.0901 (18)0.067 (2)0.075 (2)0.0556 (19)
O40.1193 (18)0.0551 (11)0.0962 (15)0.0403 (11)0.0168 (13)0.0118 (10)
S10.0563 (4)0.0638 (4)0.0661 (4)0.0120 (3)0.0106 (3)0.0206 (3)
S20.0469 (3)0.0638 (4)0.1021 (5)0.0159 (3)0.0218 (3)0.0347 (4)
S30.0852 (5)0.0449 (3)0.0473 (3)0.0027 (3)0.0015 (3)0.0172 (2)
Geometric parameters (Å, º) top
C1—N11.506 (3)C12—C131.358 (4)
C1—C21.511 (3)C12—H120.9300
C1—H1A0.9700C13—C141.362 (4)
C1—H1B0.9700C13—H130.9300
C2—S11.798 (2)C14—N31.337 (3)
C2—H2A0.9700C14—H140.9300
C2—H2B0.9700C15—N11.504 (2)
C3—N21.330 (3)C15—C161.512 (3)
C3—C41.393 (3)C15—H15A0.9700
C3—S11.758 (2)C15—H15B0.9700
C4—C51.375 (4)C16—S31.797 (2)
C4—H40.9300C16—H16A0.9700
C5—C61.368 (4)C16—H16B0.9700
C5—H50.9300C17—N41.327 (3)
C6—C71.368 (3)C17—C181.385 (3)
C6—H60.9300C17—S31.772 (2)
C7—N21.339 (3)C18—C191.369 (3)
C7—H70.9300C18—H180.9300
C8—N11.502 (3)C19—C201.372 (3)
C8—C91.508 (3)C19—H190.9300
C8—H8A0.9700C20—C211.369 (3)
C8—H8B0.9700C20—H200.9300
C9—S21.804 (2)C21—N41.339 (3)
C9—H9A0.9700C21—H210.9300
C9—H9B0.9700Cl1—O41.3980 (18)
C10—N31.323 (3)Cl1—O21.402 (2)
C10—C111.389 (3)Cl1—O31.411 (3)
C10—S21.766 (2)Cl1—O11.416 (2)
C11—C121.375 (4)N1—H1N0.85 (2)
C11—H110.9300
N1—C1—C2112.63 (16)C14—C13—H13120.7
N1—C1—H1A109.1N3—C14—C13123.9 (3)
C2—C1—H1A109.1N3—C14—H14118.0
N1—C1—H1B109.1C13—C14—H14118.0
C2—C1—H1B109.1N1—C15—C16112.76 (17)
H1A—C1—H1B107.8N1—C15—H15A109.0
C1—C2—S1116.00 (16)C16—C15—H15A109.0
C1—C2—H2A108.3N1—C15—H15B109.0
S1—C2—H2A108.3C16—C15—H15B109.0
C1—C2—H2B108.3H15A—C15—H15B107.8
S1—C2—H2B108.3C15—C16—S3114.41 (17)
H2A—C2—H2B107.4C15—C16—H16A108.7
N2—C3—C4122.2 (2)S3—C16—H16A108.7
N2—C3—S1120.20 (16)C15—C16—H16B108.7
C4—C3—S1117.62 (19)S3—C16—H16B108.7
C5—C4—C3118.6 (2)H16A—C16—H16B107.6
C5—C4—H4120.7N4—C17—C18123.8 (2)
C3—C4—H4120.7N4—C17—S3119.39 (16)
C6—C5—C4119.4 (2)C18—C17—S3116.78 (16)
C6—C5—H5120.3C19—C18—C17118.4 (2)
C4—C5—H5120.3C19—C18—H18120.8
C7—C6—C5118.4 (2)C17—C18—H18120.8
C7—C6—H6120.8C18—C19—C20119.1 (2)
C5—C6—H6120.8C18—C19—H19120.5
N2—C7—C6123.6 (2)C20—C19—H19120.5
N2—C7—H7118.2C21—C20—C19118.3 (2)
C6—C7—H7118.2C21—C20—H20120.8
N1—C8—C9112.11 (17)C19—C20—H20120.8
N1—C8—H8A109.2N4—C21—C20124.3 (2)
C9—C8—H8A109.2N4—C21—H21117.8
N1—C8—H8B109.2C20—C21—H21117.8
C9—C8—H8B109.2O4—Cl1—O2110.19 (16)
H8A—C8—H8B107.9O4—Cl1—O3109.95 (18)
C8—C9—S2110.37 (16)O2—Cl1—O3108.4 (2)
C8—C9—H9A109.6O4—Cl1—O1109.82 (13)
S2—C9—H9A109.6O2—Cl1—O1111.28 (18)
C8—C9—H9B109.6O3—Cl1—O1107.10 (17)
S2—C9—H9B109.6C8—N1—C15110.80 (16)
H9A—C9—H9B108.1C8—N1—C1110.78 (15)
N3—C10—C11123.5 (2)C15—N1—C1111.01 (16)
N3—C10—S2119.08 (17)C8—N1—H1N107.1 (16)
C11—C10—S2117.41 (19)C15—N1—H1N110.9 (16)
C12—C11—C10117.6 (3)C1—N1—H1N106.1 (15)
C12—C11—H11121.2C3—N2—C7117.69 (19)
C10—C11—H11121.2C10—N3—C14116.7 (2)
C13—C12—C11119.7 (3)C17—N4—C21116.07 (19)
C13—C12—H12120.2C3—S1—C2104.27 (10)
C11—C12—H12120.2C10—S2—C9101.18 (11)
C12—C13—C14118.6 (3)C17—S3—C16102.03 (11)
C12—C13—H13120.7
N1—C1—C2—S188.3 (2)C16—C15—N1—C184.1 (2)
N2—C3—C4—C50.4 (3)C2—C1—N1—C878.5 (2)
S1—C3—C4—C5179.12 (19)C2—C1—N1—C15157.92 (18)
C3—C4—C5—C60.3 (4)C4—C3—N2—C71.1 (3)
C4—C5—C6—C70.4 (4)S1—C3—N2—C7179.76 (17)
C5—C6—C7—N20.3 (4)C6—C7—N2—C31.1 (3)
N1—C8—C9—S2167.02 (14)C11—C10—N3—C140.2 (3)
N3—C10—C11—C121.1 (3)S2—C10—N3—C14179.71 (17)
S2—C10—C11—C12179.07 (18)C13—C14—N3—C101.0 (4)
C10—C11—C12—C131.5 (4)C18—C17—N4—C210.1 (3)
C11—C12—C13—C140.7 (4)S3—C17—N4—C21179.39 (17)
C12—C13—C14—N30.6 (4)C20—C21—N4—C170.4 (4)
N1—C15—C16—S379.1 (2)N2—C3—S1—C227.5 (2)
N4—C17—C18—C190.8 (3)C4—C3—S1—C2153.81 (18)
S3—C17—C18—C19178.63 (18)C1—C2—S1—C385.25 (17)
C17—C18—C19—C201.1 (3)N3—C10—S2—C913.36 (19)
C18—C19—C20—C210.6 (4)C11—C10—S2—C9166.76 (17)
C19—C20—C21—N40.2 (4)C8—C9—S2—C1079.99 (17)
C9—C8—N1—C1582.6 (2)N4—C17—S3—C169.5 (2)
C9—C8—N1—C1153.72 (17)C18—C17—S3—C16170.05 (17)
C16—C15—N1—C8152.34 (18)C15—C16—S3—C1779.31 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H(1N)···N20.85 (2)1.98 (2)2.812 (2)165 (3)

Experimental details

Crystal data
Chemical formulaC21H25N4S3+·ClO4
Mr529.08
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.5480 (7), 11.9753 (10), 12.9346 (11)
α, β, γ (°)110.884 (4), 99.609 (4), 91.774 (4)
V3)1213.81 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.37 × 0.35 × 0.33
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.846, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
6994, 4726, 3936
Rint0.010
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.03
No. of reflections4726
No. of parameters302
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.43

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H(1N)···N20.85 (2)1.98 (2)2.812 (2)165 (3)
 

Acknowledgements

The authors thank the Project of Shanghai Municipal Education Commission (2008080, 2008068, 09YZ245, 10YZ111, 10ZZ98), the `Chen Guang' project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (09 C G52), the Innovative Activities of University Students in Shanghai Maritime University Project (090503) and the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF09001) for financial support.

References

First citationBretonniere, Y., Mazzanti, M., Wietzke, R. & Pecaut, J. (2000). Chem. Commun. pp. 1543–1544.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, S.-G. & Ahn, K. H. (2000). Chem. Eur. J. 18, 3399–3403.  CrossRef Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWietzke, R., Mazzanti, M., Latour, J.-M., Pecaut, J., Cordier, P.-Y. & Madic, C. (1998). Inorg. Chem. 37, 6690–6697.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds