organic compounds
1,4-Bis(4-bromo-2,6-diisopropylphenyl)-1,4-diazabuta-1,3-diene
aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
*Correspondence e-mail: iguzei@chem.wisc.edu
The molecule of the title compound, C26H34Br2N2, lies on a crystallographic inversion center and hence the two imine groups are s-trans. The dihedral angle between the central 1,4-diazabuta-1,3-diene unit and the attached substituted phenyl ring is 88.4 (7)°. The structure features a C—H⋯N close contact. The crystal selected for this study proved to be a non-merohedral twin with a minor component of 21.8 (3)%.
Related literature
1,4-diaza-1,3-butadiene (DAB) ligands containing sterically demanding N-substituents have proved to be versatile platforms for stabilizing s- and p-block atoms in unusual oxidation states or coordination geometries, see: Baker et al. (2008); Hill et al. (2009); Liu et al. (2009); Martin et al. (2009); Segawa et al. (2008). The title compound was prepared as part of our continuing studies on the chemistry of N-heterocyclic silylenes and see: Hill et al. (2005); Naka et al. (2004); Tomasik et al. (2009). For the use of DAB ligands in olefin polymerization catalysis, see: Ittel et al. (2000); Jung et al. (2007). For related structures, see: (2003); Müller et al. (2003); Schaub et al. (2006); Berger et al. (2001); Laine et al. (1999). For the preparation of 4-bromo-2,6-di-iso-propyl aniline, see: Liu et al. (2005). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: GIS (Bruker, 2009); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL and OLEX2 (Dolomanov et al., 2009); molecular graphics: SHELXTL and OLEX2; software used to prepare material for publication: SHELXTL, OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2009) and modiCIFer (Guzei, 2007).
Supporting information
10.1107/S1600536809050843/bx2248sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809050843/bx2248Isup2.hkl
4-Bromo-2,6-di-iso-propyl aniline was prepared according to the literature procedure (Liu et al. 2005). To a stirred solution of 4-bromo-2,6-di-iso-propyl aniline (3.0 g,11.71 mmol) in methanol (40 cm3) containing 4 drops of formic acid was added glyoxal (0.85 g, 5.80 mmol, 40% aqueous soln.) slowly dropwise. The reaction mixture was stirred for 24 h at room temperature, filtered, and the precipitate washed with cold MeOH (2 x 10 mL). This yellow solid was dried in vacuo and recrystallized from EtOH to give a crop of pale yellow needles suitable for X-ray
Yield 3.53 g, 56%.1H-NMR (CD2Cl2, 300 MHz): δ 1.19 (d, 3J = 6.9 Hz, 24H, CH3), 2.91 (sept, 3J = 6.8 Hz, 4H, CH), 7.31 (s, 4H, aromatic), 8.07 (s, 2H, CH); 13C{1H}-NMR (CD2Cl2, 75 MHz): δ 22.80, 28.43, 119.42, 126.79, 139.29, 147.52, 163.97.
All H-atoms were placed in idealized locations with C—H distances 0.93 - 0.98 Å and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 or 1.5 times Ueq(bearing atom). The crystal of (I) selected for this study proved to be a non-merohedral twin. The two twin components are related by a 179.9° rotation about the [001] direction in
with the minor component contribution of 21.8 (3)%.Data collection: GIS (Bruker, 2009); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009) publCIF (Westrip, 2009) and modiCIFer (Guzei, 2007).C26H34Br2N2 | F(000) = 548 |
Mr = 534.37 | Dx = 1.328 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 999 reflections |
a = 8.961 (3) Å | θ = 2.3–24.8° |
b = 17.848 (7) Å | µ = 3.05 mm−1 |
c = 8.620 (3) Å | T = 300 K |
β = 104.260 (11)° | Block, yellow |
V = 1336.2 (8) Å3 | 0.43 × 0.35 × 0.29 mm |
Z = 2 |
Bruker SMART X2S diffractometer | 2286 independent reflections |
Radiation source: micro-focus sealed tube | 1585 reflections with I > 2σ(I) |
Doubly curved silicon crystal monochromator | Rint = 0.110 |
ω scans | θmax = 24.8°, θmin = 2.3° |
Absorption correction: multi-scan (TWINABS; Bruker, 2007) | h = 0→10 |
Tmin = 0.103, Tmax = 0.428 | k = −21→0 |
2286 measured reflections | l = −10→9 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.069 | H-atom parameters constrained |
wR(F2) = 0.199 | w = 1/[σ2(Fo2) + (0.0949P)2 + 1.843P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2286 reflections | Δρmax = 0.53 e Å−3 |
142 parameters | Δρmin = −0.60 e Å−3 |
0 restraints | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.038 (5) |
C26H34Br2N2 | V = 1336.2 (8) Å3 |
Mr = 534.37 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.961 (3) Å | µ = 3.05 mm−1 |
b = 17.848 (7) Å | T = 300 K |
c = 8.620 (3) Å | 0.43 × 0.35 × 0.29 mm |
β = 104.260 (11)° |
Bruker SMART X2S diffractometer | 2286 independent reflections |
Absorption correction: multi-scan (TWINABS; Bruker, 2007) | 1585 reflections with I > 2σ(I) |
Tmin = 0.103, Tmax = 0.428 | Rint = 0.110 |
2286 measured reflections |
R[F2 > 2σ(F2)] = 0.069 | 0 restraints |
wR(F2) = 0.199 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.53 e Å−3 |
2286 reflections | Δρmin = −0.60 e Å−3 |
142 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 1.14981 (9) | 0.69711 (6) | 0.27272 (12) | 0.0957 (6) | |
N1 | 0.6097 (6) | 0.5812 (3) | 0.5079 (7) | 0.0523 (14) | |
C1 | 0.5657 (8) | 0.5148 (3) | 0.4744 (8) | 0.0513 (17) | |
H1 | 0.6173 | 0.4847 | 0.4166 | 0.062* | |
C2 | 0.7381 (6) | 0.6090 (3) | 0.4544 (7) | 0.0395 (14) | |
C3 | 0.7094 (7) | 0.6469 (3) | 0.3074 (7) | 0.0409 (14) | |
C4 | 0.8336 (7) | 0.6738 (3) | 0.2564 (7) | 0.0456 (15) | |
H4 | 0.8179 | 0.6992 | 0.1595 | 0.055* | |
C5 | 0.9804 (7) | 0.6630 (4) | 0.3489 (8) | 0.0500 (16) | |
C6 | 1.0083 (7) | 0.6289 (4) | 0.4968 (8) | 0.0529 (16) | |
H6 | 1.1086 | 0.6245 | 0.5591 | 0.063* | |
C7 | 0.8860 (8) | 0.6012 (3) | 0.5528 (8) | 0.0485 (16) | |
C8 | 0.5477 (7) | 0.6575 (4) | 0.2044 (9) | 0.0536 (16) | |
H8 | 0.4780 | 0.6500 | 0.2746 | 0.064* | |
C9 | 0.5079 (12) | 0.5984 (6) | 0.0770 (14) | 0.119 (4) | |
H9C | 0.5672 | 0.6062 | −0.0004 | 0.179* | |
H9B | 0.4002 | 0.6013 | 0.0251 | 0.179* | |
H9A | 0.5309 | 0.5498 | 0.1247 | 0.179* | |
C10 | 0.5185 (9) | 0.7356 (5) | 0.1375 (14) | 0.088 (3) | |
H10C | 0.5496 | 0.7714 | 0.2224 | 0.132* | |
H10A | 0.4108 | 0.7416 | 0.0883 | 0.132* | |
H10B | 0.5766 | 0.7436 | 0.0590 | 0.132* | |
C11 | 0.9157 (9) | 0.5652 (4) | 0.7203 (8) | 0.0626 (18) | |
H11 | 0.8533 | 0.5195 | 0.7090 | 0.075* | |
C12 | 0.8601 (13) | 0.6152 (5) | 0.8316 (10) | 0.101 (3) | |
H12B | 0.8573 | 0.5880 | 0.9269 | 0.151* | |
H12A | 0.7586 | 0.6327 | 0.7808 | 0.151* | |
H12C | 0.9285 | 0.6572 | 0.8591 | 0.151* | |
C13 | 1.0834 (11) | 0.5415 (5) | 0.7895 (10) | 0.087 (3) | |
H13A | 1.1158 | 0.5093 | 0.7148 | 0.131* | |
H13B | 1.0915 | 0.5152 | 0.8884 | 0.131* | |
H13C | 1.1478 | 0.5852 | 0.8086 | 0.131* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0555 (5) | 0.1428 (10) | 0.0961 (8) | −0.0228 (5) | 0.0324 (5) | 0.0295 (6) |
N1 | 0.067 (3) | 0.034 (3) | 0.065 (4) | −0.011 (2) | 0.036 (3) | −0.001 (2) |
C1 | 0.068 (4) | 0.035 (3) | 0.063 (4) | −0.014 (3) | 0.040 (4) | −0.007 (3) |
C2 | 0.053 (3) | 0.027 (3) | 0.046 (4) | −0.006 (2) | 0.026 (3) | −0.004 (3) |
C3 | 0.046 (3) | 0.033 (3) | 0.046 (4) | −0.005 (3) | 0.015 (3) | −0.003 (3) |
C4 | 0.053 (4) | 0.046 (3) | 0.039 (3) | −0.006 (3) | 0.014 (3) | 0.002 (3) |
C5 | 0.046 (4) | 0.059 (4) | 0.050 (4) | −0.011 (3) | 0.021 (3) | 0.000 (3) |
C6 | 0.052 (3) | 0.057 (4) | 0.050 (4) | −0.006 (3) | 0.014 (3) | 0.006 (3) |
C7 | 0.064 (4) | 0.042 (3) | 0.043 (4) | −0.006 (3) | 0.020 (3) | 0.002 (3) |
C8 | 0.046 (3) | 0.052 (4) | 0.063 (4) | −0.005 (3) | 0.014 (3) | 0.007 (3) |
C9 | 0.093 (7) | 0.119 (8) | 0.117 (9) | −0.024 (6) | −0.030 (6) | −0.045 (7) |
C10 | 0.063 (5) | 0.080 (5) | 0.115 (8) | 0.008 (4) | 0.013 (6) | 0.039 (6) |
C11 | 0.083 (5) | 0.059 (4) | 0.052 (4) | −0.003 (4) | 0.027 (4) | 0.014 (4) |
C12 | 0.161 (10) | 0.094 (6) | 0.063 (6) | 0.043 (6) | 0.058 (6) | 0.026 (5) |
C13 | 0.109 (7) | 0.081 (6) | 0.072 (6) | 0.025 (5) | 0.025 (5) | 0.019 (5) |
Br1—C5 | 1.897 (6) | C8—H8 | 0.9800 |
N1—C1 | 1.260 (7) | C9—H9C | 0.9600 |
N1—C2 | 1.429 (7) | C9—H9B | 0.9600 |
C1—C1i | 1.455 (11) | C9—H9A | 0.9600 |
C1—H1 | 0.9300 | C10—H10C | 0.9600 |
C2—C7 | 1.393 (9) | C10—H10A | 0.9600 |
C2—C3 | 1.403 (8) | C10—H10B | 0.9600 |
C3—C4 | 1.380 (8) | C11—C12 | 1.483 (11) |
C3—C8 | 1.513 (9) | C11—C13 | 1.533 (12) |
C4—C5 | 1.374 (9) | C11—H11 | 0.9800 |
C4—H4 | 0.9300 | C12—H12B | 0.9600 |
C5—C6 | 1.379 (9) | C12—H12A | 0.9600 |
C6—C7 | 1.393 (9) | C12—H12C | 0.9600 |
C6—H6 | 0.9300 | C13—H13A | 0.9600 |
C7—C11 | 1.542 (9) | C13—H13B | 0.9600 |
C8—C9 | 1.501 (12) | C13—H13C | 0.9600 |
C8—C10 | 1.507 (10) | ||
C1—N1—C2 | 118.9 (5) | C8—C9—H9B | 109.5 |
N1—C1—C1i | 120.3 (7) | H9C—C9—H9B | 109.5 |
N1—C1—H1 | 119.9 | C8—C9—H9A | 109.5 |
C1i—C1—H1 | 119.9 | H9C—C9—H9A | 109.5 |
C7—C2—C3 | 122.3 (5) | H9B—C9—H9A | 109.5 |
C7—C2—N1 | 119.3 (5) | C8—C10—H10C | 109.5 |
C3—C2—N1 | 118.4 (5) | C8—C10—H10A | 109.5 |
C4—C3—C2 | 118.2 (5) | H10C—C10—H10A | 109.5 |
C4—C3—C8 | 120.0 (5) | C8—C10—H10B | 109.5 |
C2—C3—C8 | 121.8 (5) | H10C—C10—H10B | 109.5 |
C5—C4—C3 | 119.9 (6) | H10A—C10—H10B | 109.5 |
C5—C4—H4 | 120.1 | C12—C11—C13 | 111.5 (8) |
C3—C4—H4 | 120.1 | C12—C11—C7 | 110.3 (6) |
C4—C5—C6 | 121.9 (6) | C13—C11—C7 | 114.0 (6) |
C4—C5—Br1 | 119.2 (5) | C12—C11—H11 | 106.9 |
C6—C5—Br1 | 118.9 (5) | C13—C11—H11 | 106.9 |
C5—C6—C7 | 119.9 (6) | C7—C11—H11 | 106.9 |
C5—C6—H6 | 120.1 | C11—C12—H12B | 109.5 |
C7—C6—H6 | 120.1 | C11—C12—H12A | 109.5 |
C6—C7—C2 | 117.7 (6) | H12B—C12—H12A | 109.5 |
C6—C7—C11 | 120.2 (6) | C11—C12—H12C | 109.5 |
C2—C7—C11 | 122.1 (6) | H12B—C12—H12C | 109.5 |
C9—C8—C10 | 112.5 (8) | H12A—C12—H12C | 109.5 |
C9—C8—C3 | 111.2 (6) | C11—C13—H13A | 109.5 |
C10—C8—C3 | 113.0 (5) | C11—C13—H13B | 109.5 |
C9—C8—H8 | 106.5 | H13A—C13—H13B | 109.5 |
C10—C8—H8 | 106.5 | C11—C13—H13C | 109.5 |
C3—C8—H8 | 106.5 | H13A—C13—H13C | 109.5 |
C8—C9—H9C | 109.5 | H13B—C13—H13C | 109.5 |
C2—N1—C1—C1i | −179.3 (8) | C5—C6—C7—C11 | −178.1 (6) |
C1—N1—C2—C7 | −90.5 (7) | C3—C2—C7—C6 | −3.5 (9) |
C1—N1—C2—C3 | 92.9 (7) | N1—C2—C7—C6 | −179.9 (6) |
C7—C2—C3—C4 | 3.3 (8) | C3—C2—C7—C11 | 174.9 (5) |
N1—C2—C3—C4 | 179.8 (5) | N1—C2—C7—C11 | −1.6 (8) |
C7—C2—C3—C8 | −177.7 (5) | C4—C3—C8—C9 | 82.5 (8) |
N1—C2—C3—C8 | −1.2 (8) | C2—C3—C8—C9 | −96.4 (8) |
C2—C3—C4—C5 | 0.1 (9) | C4—C3—C8—C10 | −45.1 (9) |
C8—C3—C4—C5 | −178.9 (6) | C2—C3—C8—C10 | 135.9 (7) |
C3—C4—C5—C6 | −3.3 (10) | C6—C7—C11—C12 | 108.2 (9) |
C3—C4—C5—Br1 | 177.6 (5) | C2—C7—C11—C12 | −70.1 (9) |
C4—C5—C6—C7 | 3.1 (10) | C6—C7—C11—C13 | −18.1 (10) |
Br1—C5—C6—C7 | −177.8 (5) | C2—C7—C11—C13 | 163.6 (7) |
C5—C6—C7—C2 | 0.3 (9) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C26H34Br2N2 |
Mr | 534.37 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 300 |
a, b, c (Å) | 8.961 (3), 17.848 (7), 8.620 (3) |
β (°) | 104.260 (11) |
V (Å3) | 1336.2 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.05 |
Crystal size (mm) | 0.43 × 0.35 × 0.29 |
Data collection | |
Diffractometer | Bruker SMART X2S diffractometer |
Absorption correction | Multi-scan (TWINABS; Bruker, 2007) |
Tmin, Tmax | 0.103, 0.428 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2286, 2286, 1585 |
Rint | 0.110 |
(sin θ/λ)max (Å−1) | 0.590 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.069, 0.199, 1.04 |
No. of reflections | 2286 |
No. of parameters | 142 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.60 |
Computer programs: GIS (Bruker, 2009), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009) publCIF (Westrip, 2009) and modiCIFer (Guzei, 2007).
Acknowledgements
We gratefully acknowledge Bruker AXS sponsorship of this publication.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Baker, R. J., Jones, C., Mills, D. P., Pierce, G. A. & Waugh, M. (2008). Inorg. Chim. Acta, 361, 427–435. Web of Science CSD CrossRef CAS Google Scholar
Berger, S., Baumann, F., Scheiring, T. & Kaim, W. (2001). Z. Anorg. Allg. Chem. 627, 620–630. CrossRef CAS Google Scholar
Bruker (2007). TWINABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2009). GIS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Guzei, I. A. (2007). modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA. Google Scholar
Hill, N. J., Moser, D. F., Guzei, I. A. & West, R. (2005). Organometallics, 24, 3346–3349. Web of Science CSD CrossRef CAS Google Scholar
Hill, N. J., Vargas-Baca, I. & Cowley, A. H. (2009). Dalton Trans. pp. 240–253. Web of Science CrossRef Google Scholar
Ittel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169–1203. Web of Science CrossRef PubMed CAS Google Scholar
Jung, I. G., Seo, J., Chung, Y. K., Shin, D. M., Chun, S.-H. & Son, S. U. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 3042–3052. Web of Science CrossRef CAS Google Scholar
Laine, T. V., Klinga, M., Maaninen, A., Aitola, E. & Leskela, M. (1999). Acta Chem. Scand.. 53, 968–973. Web of Science CrossRef CAS Google Scholar
Liu, H.-R., Gomes, P. T., Costa, S. I., Duarte, M. T., Branquinho, R., Fernades, A. C., Chein, J. W., Singh, R. P. & Marques, M. M. (2005). J. Organomet. Chem. 690, 1314–1322. Web of Science CSD CrossRef CAS Google Scholar
Liu, Y., Li, S., Yang, X.-J., Yang, P. & Wu, B. (2009). J. Am. Chem. Soc. 131, 4210–4211. Web of Science CSD CrossRef PubMed CAS Google Scholar
Martin, C. D., Jennings, M. C., Ferguson, M. J. & Ragogna, P. J. (2009). Angew. Chem. Int. Ed. 48, 2210–2213. Web of Science CSD CrossRef CAS Google Scholar
Müller, T., Schrecke, B. & Bolte, M. (2003). Acta Cryst. E59, o1820–o1821. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naka, A., Hill, N. J. & West, R. (2004). Organometallics, 23, 6330–6332. Web of Science CSD CrossRef CAS Google Scholar
Schaub, T. & Radius, U. (2006). Z. Anorg. Allg. Chem. 632, 807–813. Web of Science CSD CrossRef CAS Google Scholar
Segawa, Y., Suzuki, Y., Yamashita, M. & Nozaki, K. (2008). J. Am. Chem. Soc. 130, 16069–16079. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tomasik, A. C., Hill, N. J. & West, R. (2009). J. Organomet. Chem. 694, 2122–2125. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,4-diaza-1,3-butadiene (DAB) ligands bearing bulky aryl or alkyl groups on the nitrogen atoms have proven to be versatile platforms for stabilizing s- and p-block atoms in unusual oxidation states or coordination geometries (Baker et al. (2008); Hill et al. (2009); Liu et al. (2009); Martin et al. (2009); Segawa et al. (2008)). The title compound, (I), was prepared as part of our continuing studies upon the chemistry of N-heterocyclic silylenes and germylenes (Hill et al. (2005); Naka et al. (2004); Tomasik et al. (2009)), the silicon(II) and germanium(II) analogues of the well known Arduengo N-heterocyclic carbenes. DAB ligands are ideal in this regard since their stereo-electronic properties are easily tuned by alteration of the N– and C-substituents.
DAB ligands have also been used extensively in d-block coordination chemistry, particularly within the field of olefin polymerization catalysis (Ittel et al. 2000). Jung et al. (2007) recently used the title compound as a precursor to an N-heterocyclic carbene in the synthesis of a catalytically active cationic (η3-allyl)(NHC)palladium complex.
The molecule of (I) resides on a crystallographic inversion center and hence the two imine groups are s-trans. The dihedral angle between the central 1,4-diazabuta-1,3-diene moiety and the attached substituted phenyl ring is 88.4 (7)°. The molecular symmetry approaches C2h, however, the positions of the isopropyl groups break the mirror plane symmetry: both H atoms on the tertiary C atoms of the two symmetry-independent iPr groups point toward atom N1, but reside on the opposite sides of the phenyl ring. This is illustrated with two disparate but "would be equivalent" torsion angles, one for each iPr group: C2—C3—C8—C9 (-96.5 (8)°) and C2—C7—C11—C13 (163.6 (7)°). This geometry differs from that of the unbrominated congener of (I), 1,4-bis(2,6-diisopropyl-phenyl)-1,4-diazabuta-1,3-diene, (II). For related structures, see: Müller et al. (2003), Schaub et al. (2006). Compound (II), structurally characterized at 173 K by Berger et al. (2001) and at 193 K by Laine et al.(1999), crystallizes with the molecule of (II) on an inversion center. The H atoms of the tertiary C atom of the isopropyl groups point toward the N atom and, in contrast to (I), are located on the same side of the phenyl ring. The overall symmetry of (II) is much closer to C2h as the iPr groups are oriented very similarly: in the 193 K structure of (II) two "would be equivalent" Me—C(H)—C—C(N) torsion angles measured 144.6 and 145.4°. The C—Br distance of 1.897 (6) Å is in excellent agreement with the value of 1.899 (11) Å obtained by averaging 2303 C—Br bond lengths from 1736 relevant compounds reported to the Cambridge Structural Database (Allen, 2002).