organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-4-(1-methyl-1H-benzimidazol-2-yl)pyridinium iodide

aSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: wangfmzj@yahoo.com.cn

(Received 22 November 2009; accepted 15 December 2009; online 19 December 2009)

The cation of the title compound, C14H14N3+·I, is non-planar, the dihedral angle between the benzimidazole and the 1-methyl­pyridinium planes being 37.4 (2)°. The crystal structure is stabilized by weak ππ stacking inter­actions, the centroid–centroid distances between 1-methyl­imidazole and benzimidazole planes being 3.678 (4) Å.

Related literature

For background to imidazole and its derivatives, see: Huang et al. (2004[Huang, X.-C., Zhang, J.-P. & Chen, X.-M. (2004). J. Am. Chem. Soc. 126, 13218-13219.]). For the biological activity of benzimidazole, see: Demirayak et al. (2002[Demirayak, S., Abu Mohsen, U. & Lagri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255-260.]); Pawar et al. (2004[Pawar, N. S., Dalal, D. S., Shimpi, S. R. & Mahulikar, P. P. (2004). Eur. J. Pharm. Sci. 21, 115-118]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N3+·I

  • Mr = 351.18

  • Triclinic, [P \overline 1]

  • a = 7.7048 (15) Å

  • b = 9.9264 (18) Å

  • c = 10.1772 (19) Å

  • α = 64.888 (3)°

  • β = 72.933 (3)°

  • γ = 76.394 (4)°

  • V = 668.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.38 mm−1

  • T = 291 K

  • 0.35 × 0.25 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.493, Tmax = 0.887

  • 3353 measured reflections

  • 2307 independent reflections

  • 1840 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.092

  • S = 1.00

  • 2307 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole and its derivatives are a very important kind of heterocyclic compounds with N-donor atoms, therefore they can be excellent organic ligands to generate various complexes (Huang et al., 2004). Owing to its biological activities such as antimicrobial, antifungal (Pawar et al., 2004), anticancer (Demirayak et al., 2002), and so on, benzimidazoles have also received much attention. The construction of new member of this family is an important direction in the development of modern coordination chemistry and biological chemistry. We report here the synthesis and crystal structure of the title compound. The molecular structure is shown in Fig. 1. The cation of (I) is non-planar, the dihedral angle between the benzimidazolyl plane and the N-methylpyridinium plane is 37.4 (2)°. The crystal structure is stabilized by ππ [Cg1: N2-C7-N3-C13-C8; Cg2(i): C8/C13, code symmetry: (i) -x+2, -y+1, -z] stacking interaction, the distance centroid-centroid between these planes is 3.678 (4) Å. The crystal packing also exhibits a weak intermolecular C—H···I interaction.

Related literature top

For background to imidazole and its derivatives, see: Huang et al. (2004). For the biological activity of benzimidazole, see: Demirayak et al. (2002); Pawar et al. (2004).

Experimental top

Metallic sodium (0.25 g, 10.8 mmol) was dissolved in the stirred anhydrous ethanol(10 ml) under an atmosphere of nitrogen. Then added 2-(4-pyridinyl)-1H-benzimidazole (1.95 g, 10 mmol), dry actone (150 ml) and methyl iodide(1.24 ml, 20 mmol) in the above solution. The reaction mixture was refluxed for 24 h. When the reaction stopped and the mixture were cooled to room temperature, the solution were removed under decompression. Then the residue recrystallized from water twice to obtain the single crystals (3.0 g, 8.66 mmol).

Refinement top

All H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C—H distances in the range of 0.93—0.96 Å, and with Uiso(H) = 1.2Ueq(parent atom), or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level.
1-Methyl-4-(1-methyl-1H-benzimidazol-2-yl)pyridinium iodide top
Crystal data top
C14H14N3+·IZ = 2
Mr = 351.18F(000) = 344
Triclinic, P1Dx = 1.745 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7048 (15) ÅCell parameters from 1236 reflections
b = 9.9264 (18) Åθ = 3.1–22.1°
c = 10.1772 (19) ŵ = 2.38 mm1
α = 64.888 (3)°T = 291 K
β = 72.933 (3)°Piece, colorless
γ = 76.394 (4)°0.35 × 0.25 × 0.05 mm
V = 668.2 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2307 independent reflections
Radiation source: sealed tube1840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 97
Tmin = 0.493, Tmax = 0.887k = 1011
3353 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0301P)2]
where P = (Fo2 + 2Fc2)/3
2307 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C14H14N3+·Iγ = 76.394 (4)°
Mr = 351.18V = 668.2 (2) Å3
Triclinic, P1Z = 2
a = 7.7048 (15) ÅMo Kα radiation
b = 9.9264 (18) ŵ = 2.38 mm1
c = 10.1772 (19) ÅT = 291 K
α = 64.888 (3)°0.35 × 0.25 × 0.05 mm
β = 72.933 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2307 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1840 reflections with I > 2σ(I)
Tmin = 0.493, Tmax = 0.887Rint = 0.058
3353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.00Δρmax = 0.94 e Å3
2307 reflectionsΔρmin = 0.48 e Å3
163 parameters
Special details top

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

7.5483 (0.0040) x + 0.9256 (0.0225) y + 1.1206 (0.0247) z = 6.5511 (0.0171)

* 0.0017 (0.0039) N1 * 0.0018 (0.0041) C2 * -0.0063 (0.0040) C3 * 0.0074 (0.0040) C4 * -0.0041 (0.0042) C5 * -0.0004 (0.0041) C6

Rms deviation of fitted atoms = 0.0044

6.8822 (0.0088) x + 3.4760 (0.0239) y + 7.0324 (0.0184) z = 8.6547 (0.0229)

Angle to previous plane (with approximate e.s.d.) = 37.43 (0.15)

* -0.0020 (0.0031) C7 * -0.0067 (0.0031) N2 * 0.0128 (0.0031) C8 * -0.0138 (0.0030) C13 * 0.0098 (0.0030) N3

Rms deviation of fitted atoms = 0.0100

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7976 (9)0.1720 (7)0.3724 (7)0.0574 (18)
H1A0.78500.14180.47740.086*
H1B0.91490.12930.33110.086*
H1C0.70270.13740.35570.086*
C20.7960 (8)0.4044 (7)0.1519 (7)0.0443 (15)
H2A0.81210.34520.09770.053*
C30.7870 (8)0.5551 (6)0.0807 (7)0.0422 (15)
H3A0.79480.59920.02140.051*
C40.7660 (8)0.6442 (6)0.1610 (6)0.0387 (14)
C50.7505 (8)0.5736 (6)0.3135 (6)0.0422 (15)
H5A0.73370.62970.37070.051*
C60.7598 (8)0.4226 (7)0.3784 (7)0.0445 (15)
H6A0.75060.37590.48060.053*
C70.7700 (8)0.8070 (6)0.0779 (6)0.0339 (13)
C80.8426 (8)1.0150 (6)0.0938 (6)0.0395 (14)
C90.9152 (8)1.1306 (7)0.2232 (7)0.0443 (15)
H9A1.00631.11040.29830.053*
C100.8473 (9)1.2748 (7)0.2354 (7)0.0498 (17)
H10A0.89411.35360.32020.060*
C110.7082 (9)1.3076 (7)0.1230 (7)0.0482 (16)
H11A0.66441.40710.13610.058*
C120.6369 (8)1.1955 (6)0.0047 (7)0.0423 (15)
H12A0.54541.21610.07930.051*
C130.7076 (7)1.0494 (6)0.0175 (6)0.0344 (13)
C140.5260 (8)0.8957 (7)0.2645 (7)0.0478 (16)
H14A0.52250.79090.32450.072*
H14B0.40900.94050.24000.072*
H14C0.55410.94380.31870.072*
I10.26309 (6)0.26836 (5)0.37099 (4)0.05037 (19)
N10.7821 (6)0.3387 (5)0.2996 (6)0.0432 (12)
N20.8779 (7)0.8606 (5)0.0548 (5)0.0426 (12)
N30.6668 (6)0.9141 (5)0.1277 (5)0.0367 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.062 (5)0.042 (4)0.064 (5)0.010 (3)0.008 (4)0.019 (3)
C20.047 (4)0.049 (4)0.045 (4)0.011 (3)0.011 (3)0.023 (3)
C30.043 (4)0.046 (4)0.042 (4)0.001 (3)0.011 (3)0.022 (3)
C40.030 (3)0.047 (4)0.042 (4)0.001 (3)0.008 (3)0.021 (3)
C50.046 (4)0.045 (4)0.042 (4)0.010 (3)0.007 (3)0.022 (3)
C60.053 (4)0.044 (4)0.037 (3)0.004 (3)0.008 (3)0.018 (3)
C70.032 (3)0.039 (3)0.033 (3)0.005 (3)0.008 (3)0.016 (3)
C80.043 (4)0.042 (4)0.039 (3)0.006 (3)0.016 (3)0.016 (3)
C90.045 (4)0.046 (4)0.043 (4)0.011 (3)0.010 (3)0.016 (3)
C100.052 (4)0.051 (4)0.046 (4)0.020 (3)0.021 (3)0.005 (3)
C110.048 (4)0.038 (4)0.065 (5)0.001 (3)0.024 (4)0.021 (3)
C120.041 (4)0.044 (4)0.048 (4)0.001 (3)0.013 (3)0.024 (3)
C130.032 (3)0.041 (4)0.036 (3)0.003 (3)0.014 (3)0.017 (3)
C140.042 (4)0.047 (4)0.053 (4)0.004 (3)0.008 (3)0.021 (3)
I10.0493 (3)0.0535 (3)0.0478 (3)0.0021 (2)0.0128 (2)0.0197 (2)
N10.034 (3)0.039 (3)0.057 (3)0.003 (2)0.013 (3)0.017 (3)
N20.045 (3)0.046 (3)0.044 (3)0.006 (2)0.014 (3)0.021 (2)
N30.031 (3)0.045 (3)0.038 (3)0.004 (2)0.009 (2)0.020 (3)
Geometric parameters (Å, º) top
C1—N11.490 (8)C8—N21.389 (7)
C1—H1A0.9600C8—C131.397 (8)
C1—H1B0.9600C8—C91.397 (8)
C1—H1C0.9600C9—C101.368 (8)
C2—N11.343 (7)C9—H9A0.9300
C2—C31.353 (8)C10—C111.412 (9)
C2—H2A0.9300C10—H10A0.9300
C3—C41.395 (7)C11—C121.368 (8)
C3—H3A0.9300C11—H11A0.9300
C4—C51.386 (7)C12—C131.388 (7)
C4—C71.475 (8)C12—H12A0.9300
C5—C61.350 (7)C13—N31.369 (7)
C5—H5A0.9300C14—N31.462 (7)
C6—N11.336 (7)C14—H14A0.9600
C6—H6A0.9300C14—H14B0.9600
C7—N21.318 (7)C14—H14C0.9600
C7—N31.357 (7)
N1—C1—H1A109.5C10—C9—H9A121.3
N1—C1—H1B109.5C8—C9—H9A121.3
H1A—C1—H1B109.5C9—C10—C11122.1 (6)
N1—C1—H1C109.5C9—C10—H10A119.0
H1A—C1—H1C109.5C11—C10—H10A119.0
H1B—C1—H1C109.5C12—C11—C10121.1 (6)
N1—C2—C3121.1 (5)C12—C11—H11A119.5
N1—C2—H2A119.5C10—C11—H11A119.5
C3—C2—H2A119.5C11—C12—C13116.7 (6)
C2—C3—C4119.7 (6)C11—C12—H12A121.6
C2—C3—H3A120.1C13—C12—H12A121.6
C4—C3—H3A120.1N3—C13—C12131.6 (5)
C5—C4—C3118.0 (5)N3—C13—C8105.5 (5)
C5—C4—C7123.9 (5)C12—C13—C8122.9 (6)
C3—C4—C7118.1 (5)N3—C14—H14A109.5
C6—C5—C4119.6 (5)N3—C14—H14B109.5
C6—C5—H5A120.2H14A—C14—H14B109.5
C4—C5—H5A120.2N3—C14—H14C109.5
N1—C6—C5121.8 (6)H14A—C14—H14C109.5
N1—C6—H6A119.1H14B—C14—H14C109.5
C5—C6—H6A119.1C6—N1—C2119.9 (5)
N2—C7—N3114.0 (5)C6—N1—C1121.0 (5)
N2—C7—C4121.4 (5)C2—N1—C1119.1 (5)
N3—C7—C4124.6 (5)C7—N2—C8103.7 (5)
N2—C8—C13110.2 (5)C7—N3—C13106.5 (5)
N2—C8—C9130.0 (6)C7—N3—C14128.7 (5)
C13—C8—C9119.8 (5)C13—N3—C14124.6 (5)
C10—C9—C8117.4 (6)
N1—C2—C3—C41.1 (9)N2—C8—C13—C12176.0 (5)
C2—C3—C4—C51.6 (9)C9—C8—C13—C121.7 (8)
C2—C3—C4—C7175.7 (5)C5—C6—N1—C20.1 (9)
C3—C4—C5—C61.3 (9)C5—C6—N1—C1178.2 (6)
C7—C4—C5—C6175.7 (5)C3—C2—N1—C60.3 (9)
C4—C5—C6—N10.6 (9)C3—C2—N1—C1178.5 (6)
C5—C4—C7—N2141.4 (6)N3—C7—N2—C80.4 (6)
C3—C4—C7—N235.7 (8)C4—C7—N2—C8179.7 (5)
C5—C4—C7—N338.7 (8)C13—C8—N2—C71.9 (6)
C3—C4—C7—N3144.2 (5)C9—C8—N2—C7179.3 (6)
N2—C8—C9—C10176.4 (5)N2—C7—N3—C131.2 (6)
C13—C8—C9—C100.8 (8)C4—C7—N3—C13178.7 (5)
C8—C9—C10—C110.4 (8)N2—C7—N3—C14176.0 (5)
C9—C10—C11—C120.9 (9)C4—C7—N3—C143.8 (8)
C10—C11—C12—C130.1 (8)C12—C13—N3—C7176.2 (5)
C11—C12—C13—N3179.4 (5)C8—C13—N3—C72.2 (5)
C11—C12—C13—C81.2 (8)C12—C13—N3—C141.1 (9)
N2—C8—C13—N32.6 (6)C8—C13—N3—C14177.3 (5)
C9—C8—C13—N3179.7 (5)

Experimental details

Crystal data
Chemical formulaC14H14N3+·I
Mr351.18
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.7048 (15), 9.9264 (18), 10.1772 (19)
α, β, γ (°)64.888 (3), 72.933 (3), 76.394 (4)
V3)668.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.38
Crystal size (mm)0.35 × 0.25 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.493, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
3353, 2307, 1840
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.092, 1.00
No. of reflections2307
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.48

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemirayak, S., Abu Mohsen, U. & Lagri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255–260.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, X.-C., Zhang, J.-P. & Chen, X.-M. (2004). J. Am. Chem. Soc. 126, 13218–13219.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPawar, N. S., Dalal, D. S., Shimpi, S. R. & Mahulikar, P. P. (2004). Eur. J. Pharm. Sci. 21, 115–118  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds