metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(di­methyl sulfoxide-κO)cobalt(III) trinitrate

aCollege of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: bingxueer79@163.com

(Received 20 October 2009; accepted 29 November 2009; online 9 December 2009)

The metal atom of the title salt, [Co(C2H6OS)6](NO3)3, is coordinated by six dimethyl sulfoxide mol­ecules in an octa­hedral geometry. The metal atom lies on a special position of [\overline{3}] site symmetry. One of the nitrate ions lies on a special position of 3 site symmetry and the other independent ion is disordered about a special position of [\overline{3}] site symmetry.

Related literature

For the isostructural chromium(III) and iron(III) analogs, see: Öhrström & Svensson (2000[Öhrström, L. & Svensson, G. (2000). Inorg. Chim. Acta, 305, 157-162.]); Tzou et al. (1995[Tzou, J.-R., Mullaney, M., Norman, R. E. & Chang, S.-C. (1995). Acta Cryst. C51, 2249-2252.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H6OS)6](NO3)3

  • Mr = 713.73

  • Trigonal, [R \overline 3]

  • a = 11.526 (3) Å

  • c = 19.998 (5) Å

  • V = 2300.8 (10) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 298 K

  • 0.49 × 0.41 × 0.38 mm

Data collection
  • Bruker SMART 1000 area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.632, Tmax = 0.695

  • 3840 measured reflections

  • 1158 independent reflections

  • 879 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.136

  • S = 1.07

  • 1158 reflections

  • 67 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the isostructural chromium(III) and iron(III) analogs, see: Öhrström & Svensson (2000); Tzou et al. (1995).

Experimental top

To a solution of cobalt(II) nitrate hexahydrate (0.10 g, 0.4 mmol) in methanol (10 ml) was added a solution of 1,2-disalicyloylhydrazine (0.05 g, 0.2 mmol) in DMSO (10 ml). The red solution was allowed to stand for one week, whereupon red block-shaped crystals were obtained in 60% yield (m.p. > 573 K). CH&N elemental analysis for C12H36CoN3O15S6: Calculated: C 20.19, H 5.08, N 5.89%; found: C 20.10, H 5.17, N 5.81%.

Refinement top

The nitrate anion lying on the Wyckoff 3b position is disordered. This was refined off the special position as a planar four-atom species, with N–O distances restrained to 1.24 (1) Å and O···O distances restrained to 2.15 (1) Å. The isotropic displacement parameters of the three O atoms were restrained to be identical; the O and N atoms were refined isotropically. The methyl H-atoms were placed in idealized positions and treated as riding on their parent atoms with a C–H distance of 0.96 Å [Uiso(H) = 1.5Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Displacement ellispoid plot (Barbour, 2001) of hexakis(dimethylsulfoxide)cobalt(III) trinitrate at the 50% probability level.
Hexakis(dimethyl sulfoxide-κO)cobalt(III) trinitrate top
Crystal data top
[Co(C2H6OS)6](NO3)3Dx = 1.545 Mg m3
Mr = 713.73Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 1446 reflections
Hall symbol: -R 3θ = 2.3–27.2°
a = 11.526 (3) ŵ = 1.03 mm1
c = 19.998 (5) ÅT = 298 K
V = 2300.8 (10) Å3Block, red
Z = 30.49 × 0.41 × 0.38 mm
F(000) = 1116
Data collection top
Bruker SMART 1000 area-detector
diffractometer
1158 independent reflections
Radiation source: fine-focus sealed tube879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 27.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 145
Tmin = 0.632, Tmax = 0.695k = 1114
3840 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0617P)2 + 5.5038P]
where P = (Fo2 + 2Fc2)/3
1158 reflections(Δ/σ)max = 0.001
67 parametersΔρmax = 0.59 e Å3
7 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Co(C2H6OS)6](NO3)3Z = 3
Mr = 713.73Mo Kα radiation
Trigonal, R3µ = 1.03 mm1
a = 11.526 (3) ÅT = 298 K
c = 19.998 (5) Å0.49 × 0.41 × 0.38 mm
V = 2300.8 (10) Å3
Data collection top
Bruker SMART 1000 area-detector
diffractometer
1158 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
879 reflections with I > 2σ(I)
Tmin = 0.632, Tmax = 0.695Rint = 0.062
3840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0467 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.07Δρmax = 0.59 e Å3
1158 reflectionsΔρmin = 0.62 e Å3
67 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.66670.33330.33330.0336 (3)
S10.48481 (8)0.41879 (8)0.25413 (4)0.0388 (3)
C10.3940 (4)0.3538 (5)0.17922 (18)0.0567 (10)
H1A0.44940.34270.14700.085*
H1B0.36730.41470.16200.085*
H1C0.31580.26860.18800.085*
C20.3544 (4)0.4062 (5)0.3061 (2)0.0591 (10)
H2A0.28050.31600.30510.089*
H2B0.32540.46620.29030.089*
H2C0.38670.42960.35110.089*
O10.5100 (2)0.3062 (2)0.27796 (11)0.0379 (5)
O20.6649 (4)0.4393 (3)0.0814 (2)0.0838 (11)
N10.66670.33330.0819 (3)0.0516 (13)
N20.331 (2)0.657 (2)0.1524 (6)0.060 (4)*0.1667
O30.246 (2)0.612 (3)0.1984 (10)0.104 (5)*0.1667
O40.407 (3)0.7797 (19)0.1464 (11)0.104 (5)*0.1667
O50.338 (2)0.578 (2)0.1132 (11)0.104 (5)*0.1667
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0312 (4)0.0312 (4)0.0385 (5)0.01558 (19)0.0000.000
S10.0334 (5)0.0343 (5)0.0474 (5)0.0159 (4)0.0051 (3)0.0031 (3)
C10.057 (2)0.077 (3)0.0426 (19)0.038 (2)0.0106 (17)0.0001 (18)
C20.063 (3)0.069 (3)0.062 (2)0.046 (2)0.000 (2)0.009 (2)
O10.0327 (12)0.0352 (12)0.0462 (12)0.0173 (10)0.0078 (9)0.0010 (10)
O20.078 (2)0.0523 (19)0.130 (3)0.0389 (18)0.007 (2)0.0059 (19)
N10.047 (2)0.047 (2)0.061 (3)0.0234 (10)0.0000.000
Geometric parameters (Å, º) top
Co1—O1i2.005 (2)C1—H1C0.96
Co1—O1ii2.005 (2)C2—H2A0.96
Co1—O1iii2.005 (2)C2—H2B0.96
Co1—O1iv2.005 (2)C2—H2C0.96
Co1—O12.005 (2)O2—N11.232 (3)
Co1—O1v2.005 (2)N1—O2iv1.232 (3)
S1—O11.540 (2)N1—O2iii1.232 (3)
S1—C11.765 (4)N2—O41.238 (9)
S1—C21.773 (4)N2—O51.238 (9)
C1—H1A0.96N2—O31.253 (9)
C1—H1B0.96
O1i—Co1—O1ii92.45 (9)S1—C1—H1B109.5
O1i—Co1—O1iii180.0H1A—C1—H1B109.5
O1ii—Co1—O1iii87.55 (9)S1—C1—H1C109.5
O1i—Co1—O1iv87.56 (9)H1A—C1—H1C109.5
O1ii—Co1—O1iv180.0H1B—C1—H1C109.5
O1iii—Co1—O1iv92.44 (9)S1—C2—H2A109.5
O1i—Co1—O187.56 (9)S1—C2—H2B109.5
O1ii—Co1—O187.56 (9)H2A—C2—H2B109.5
O1iii—Co1—O192.44 (9)S1—C2—H2C109.5
O1iv—Co1—O192.44 (9)H2A—C2—H2C109.5
O1i—Co1—O1v92.45 (9)H2B—C2—H2C109.5
O1ii—Co1—O1v92.44 (9)S1—O1—Co1125.03 (13)
O1iii—Co1—O1v87.55 (9)O2iv—N1—O2iii119.996 (15)
O1iv—Co1—O1v87.56 (9)O2iv—N1—O2119.995 (10)
O1—Co1—O1v179.998 (1)O2iii—N1—O2119.996 (15)
O1—S1—C1103.10 (17)O4—N2—O5120.6 (10)
O1—S1—C2104.99 (17)O4—N2—O3120.3 (10)
C1—S1—C299.5 (2)O5—N2—O3119.0 (10)
S1—C1—H1A109.5
C1—S1—O1—Co1151.6 (2)O1ii—Co1—O1—S1135.7 (2)
C2—S1—O1—Co1104.7 (2)O1iii—Co1—O1—S1136.90 (12)
O1i—Co1—O1—S143.10 (12)O1iv—Co1—O1—S144.3 (2)
Symmetry codes: (i) y+1/3, x+y+2/3, z+2/3; (ii) xy+1/3, x1/3, z+2/3; (iii) y+1, xy, z; (iv) x+y+1, x+1, z; (v) x+4/3, y+2/3, z+2/3.

Experimental details

Crystal data
Chemical formula[Co(C2H6OS)6](NO3)3
Mr713.73
Crystal system, space groupTrigonal, R3
Temperature (K)298
a, c (Å)11.526 (3), 19.998 (5)
V3)2300.8 (10)
Z3
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.49 × 0.41 × 0.38
Data collection
DiffractometerBruker SMART 1000 area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.632, 0.695
No. of measured, independent and
observed [I > 2σ(I)] reflections
3840, 1158, 879
Rint0.062
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.07
No. of reflections1158
No. of parameters67
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.62

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank Shandong University of Technology and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÖhrström, L. & Svensson, G. (2000). Inorg. Chim. Acta, 305, 157–162.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTzou, J.-R., Mullaney, M., Norman, R. E. & Chang, S.-C. (1995). Acta Cryst. C51, 2249–2252.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds