organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Hydr­­oxy-6-[(4-propyl­phenyl)­iminiometh­yl]phenolate

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139, Kurupelit-Samsun, Turkey, bFaculty of Education, Sinop University, TR-57000 Sinop, Turkey, and cDepartment of Chemistry, Ondokuz Mayıs University, TR-55139, Kurupelit-Samsun, Turkey
*Correspondence e-mail: yserap@omu.edu.tr

(Received 18 November 2009; accepted 4 December 2009; online 9 December 2009)

The title compound, C16H17NO2, crystallizes with three crystallographically independent zwitterionic mol­ecules in the asymmetric unit which differ significantly in the orientations of the propyl side chains. The dihedral angles between the two benzene rings in the three mol­ecules are 6.17 (7), 6.75 (7) and 23.67 (7)°, respectively. In each independent mol­ecule, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, each independent mol­ecule exists as part of an O—H⋯O hydrogen-bonded centrosymmetric R22(10) dimer.

Related literature

For general background to Schiff base compounds in coordination chemistry, see: Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); Moustakali-Mavridis et al. (1978[Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.]); Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). Tetrahedron, 43, 1345-1360.]); Ogawa & Harada (2003[Ogawa, K. & Harada, J. (2003). J. Mol. Struct. 647, 211-216.]); Krygowski et al. (1997[Krygowski, T. M., Wozniak, K., Anulewicz, R., Pawlak, D., Kolodziejski, W., Grech, E. & Szady, A. (1997). J. Phys. Chem. A, 101, 9399-9404.]). For related structures, see: Petek et al. (2006[Petek, H., Albayrak, Ç., Ağar, E. & Kalkan, H. (2006). Acta Cryst. E62, o3685-o3687.]); Kılıç et al. (2008[Kılıç, I., Ağar, A., Erşahin, F. & Işık, Ş. (2008). Anal. Sci. 24, 151-152.]); Gao et al. (2005[Gao, S., Huo, L.-H., Zhao, H. & Ng, S. W. (2005). Acta Cryst. E61, o192-o194.]); Temel et al. (2006[Temel, E., Albayrak, Ç., Büyükgüngör, O. & Odabaşoğlu, M. (2006). Acta Cryst. E62, o4484-o4486.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO2

  • Mr = 255.31

  • Triclinic, [P \overline 1]

  • a = 11.5743 (4) Å

  • b = 12.7635 (4) Å

  • c = 14.1706 (5) Å

  • α = 90.418 (3)°

  • β = 103.259 (3)°

  • γ = 95.540 (3)°

  • V = 2027.14 (11) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.56 × 0.42 × 0.28 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.972, Tmax = 0.985

  • 25371 measured reflections

  • 7976 independent reflections

  • 6241 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.110

  • S = 1.04

  • 7976 reflections

  • 538 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O1A 1.02 (2) 1.63 (2) 2.5444 (16) 147 (2)
N1B—H1B⋯O1B 1.06 (2) 1.57 (2) 2.5229 (16) 146 (2)
N1C—H1C⋯O1C 1.08 (2) 1.57 (2) 2.5502 (17) 149 (2)
O2A—H5A⋯O1Ai 0.90 (2) 1.89 (2) 2.7032 (17) 148 (2)
O2B—H5B⋯O1Bii 0.89 (2) 1.91 (2) 2.7049 (15) 148 (2)
O2C—H5C⋯O1Ciii 0.92 (2) 1.84 (2) 2.6659 (15) 148 (2)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+2.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases are of interest because they have long been known to show photochromism and thermochromism in the solid state which may involve reversible proton transfer from the amino N atom to the hydroxyl O atom (Cohen et al., 1964; Moustakali-Mavridis et al., 1978; Hadjoudis et al., 1987). On the basis of some thermochromic and photochromic Schiff base compounds, it was proposed that molecules exhibiting thermochromism are planar, while those exhibiting photochromism are non-planar (Moustakali-Mavridis et al., 1978). In general, there are two types of tautomeric forms in Schiff bases viz. keto-amine (quinoid with N—H···O bond) and phenol-imine (benzenoid with O—H···N bond). Quinoid tautomers can also be found in the zwitterionic form which consist of ionic intramolecular N+—H···O- hydrogen bond (Ogawa & Harada, 2003). The zwitterionic form is rarely seen in the solid state (Krygowski et al., 1997).

The three independent molecules (A, B and C) of the title compound are shown in Fig. 1. The N+—H bond lengths in molecules A, B and C are [1.02 (2), 1.06 (2) and 1.08 (3) Å, respectively] as expected in the zwitterionic form of Schiff bases (Petek et al., 2006; Kılıç et al., 2008). These values are longer than the N—H distance of 0.87 Å. The C6—O1 bond lengths in molecules A, B and C are 1.3034 (18), 1.3028 (17), 1.3060 (18) Å, respectively, and are intermediate between C—O single (1.362 Å) and CO double bond (1.222 Å) lengths (Allen et al., 1987). The C7—N1 bond lengths [1.3034 (19), 1.3068 (19) and 1.3065 (19) Å for A, B and C, respectively] are comparable to those observed in related zwitterions (Gao et al.,2005; Temel et al., 2006). Each molecule displays an E configuration with respect to its CN bond. The dihedral angle between the two benzene rings in molecules A, B and C are 6.17 (7)°, 6.75 (7)° and 23.67 (7)°, respectively. In each independent molecule, an intramolecular N—H ···O hydrogen bond generates an S(6) ring motif (Table 1).

The crystal packing is stabilized by intermolecular O—H···O hydrogen bonds (Table 1), generating centrosymmetric R22 (10) dimers (Fig.2).

Related literature top

For general background to Schiff base compounds in coordination chemistry, see: Cohen et al. (1964); Moustakali-Mavridis et al. (1978); Hadjoudis et al. (1987); Ogawa & Harada (2003); Krygowski et al. (1997). For related structures, see: Petek et al. (2006); Kılıç et al. (2008); Gao et al. (2005); Temel et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by refluxing a mixture of 2,3-dihydroxybenzaldehyde (0.5 g 3.6 mmol) in ethanol (20 ml) and 4-propylaniline (0.49 g 3.6 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 68%, m.p. 371–372 K).

Refinement top

N- and O-bound H atoms were located in a difference map and refined freely. C-bound H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C–H = 0.93–0.99 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The three independent molecules of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
(E)-2-Hydroxy-6-[(4-propylphenyl)iminiomethyl]phenolate top
Crystal data top
C16H17NO2Z = 6
Mr = 255.31F(000) = 816
Triclinic, P1Dx = 1.255 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.5743 (4) ÅCell parameters from 36582 reflections
b = 12.7635 (4) Åθ = 1.6–28.0°
c = 14.1706 (5) ŵ = 0.08 mm1
α = 90.418 (3)°T = 150 K
β = 103.259 (3)°Prism, dark red
γ = 95.540 (3)°0.56 × 0.42 × 0.28 mm
V = 2027.14 (11) Å3
Data collection top
Stoe IPDS II
diffractometer
7976 independent reflections
Radiation source: fine-focus sealed tube6241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.6°
ω scansh = 1414
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1515
Tmin = 0.972, Tmax = 0.985l = 1617
25371 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.2353P]
where P = (Fo2 + 2Fc2)/3
7976 reflections(Δ/σ)max = 0.003
538 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H17NO2γ = 95.540 (3)°
Mr = 255.31V = 2027.14 (11) Å3
Triclinic, P1Z = 6
a = 11.5743 (4) ÅMo Kα radiation
b = 12.7635 (4) ŵ = 0.08 mm1
c = 14.1706 (5) ÅT = 150 K
α = 90.418 (3)°0.56 × 0.42 × 0.28 mm
β = 103.259 (3)°
Data collection top
Stoe IPDS II
diffractometer
7976 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
6241 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.985Rint = 0.028
25371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
7976 reflectionsΔρmin = 0.26 e Å3
538 parameters
Special details top

Experimental. 316 frames, detector distance = 100 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C15B1.2012 (2)0.92858 (17)0.75163 (17)0.0717 (6)
H15C1.15470.93850.68670.086*
H15D1.23240.86080.75140.086*
C16C0.8117 (3)1.0067 (2)0.87450 (19)0.0926 (8)
H16A0.81871.02790.81100.139*
H16B0.88640.98530.90970.139*
H16C0.79101.06490.90850.139*
C1C0.19899 (13)0.38530 (11)0.85202 (11)0.0367 (3)
C2C0.18638 (15)0.29139 (12)0.79542 (12)0.0436 (4)
H2C0.24660.27650.76530.052*
C3C0.08639 (15)0.22263 (12)0.78489 (12)0.0464 (4)
H3C0.07890.16070.74810.056*
C4C0.00539 (15)0.24484 (12)0.82929 (11)0.0434 (4)
H4C0.07370.19770.82090.052*
C5C0.00403 (13)0.33476 (12)0.88471 (11)0.0385 (3)
C6C0.10763 (13)0.40783 (11)0.89947 (10)0.0356 (3)
C7C0.30005 (14)0.45906 (12)0.85868 (11)0.0371 (3)
C8C0.41020 (13)0.62687 (11)0.92008 (10)0.0353 (3)
C9C0.39200 (14)0.72868 (12)0.94441 (11)0.0411 (3)
H9C0.31710.74360.95090.049*
C10C0.48500 (16)0.80766 (13)0.95891 (11)0.0458 (4)
H10C0.47170.87550.97500.055*
C11C0.59814 (15)0.78809 (13)0.94994 (11)0.0446 (4)
C12C0.61472 (15)0.68592 (13)0.92674 (12)0.0453 (4)
H12C0.68990.67090.92100.054*
C13C0.52270 (14)0.60541 (12)0.91182 (11)0.0416 (3)
H13C0.53630.53740.89640.050*
C14C0.69818 (18)0.87517 (15)0.96110 (13)0.0579 (5)
H14E0.77160.84940.99640.069*
H14K0.68140.93280.99930.069*
C15C0.7159 (2)0.91595 (16)0.86547 (15)0.0693 (6)
H15E0.64110.93820.82900.083*
H15K0.73610.85880.82870.083*
N1C0.31247 (11)0.54844 (9)0.90723 (9)0.0364 (3)
O1C0.11620 (9)0.49230 (8)0.95420 (8)0.0419 (2)
O2C0.08724 (9)0.35566 (9)0.92583 (8)0.0444 (3)
C1B0.63614 (13)0.42043 (11)0.74837 (10)0.0335 (3)
C2B0.60523 (14)0.34026 (12)0.80990 (11)0.0411 (3)
H2B0.64820.33930.87390.049*
C3B0.51316 (14)0.26497 (12)0.77577 (11)0.0420 (3)
H3B0.49330.21320.81680.050*
C4B0.44776 (13)0.26496 (11)0.67878 (11)0.0365 (3)
H4B0.38460.21350.65640.044*
C5B0.47644 (12)0.34010 (11)0.61725 (10)0.0333 (3)
C6B0.57181 (12)0.42046 (10)0.65011 (10)0.0320 (3)
C7B0.72796 (13)0.50219 (11)0.78451 (10)0.0345 (3)
C8B0.84359 (13)0.66407 (11)0.75582 (10)0.0335 (3)
C9B0.84990 (14)0.74062 (11)0.68709 (11)0.0387 (3)
H9B0.79520.73540.62750.046*
C10B0.93783 (15)0.82436 (12)0.70778 (12)0.0445 (4)
H10B0.94150.87490.66140.053*
C11B1.02074 (15)0.83477 (11)0.79620 (11)0.0416 (3)
C12B1.01168 (14)0.75811 (12)0.86405 (11)0.0421 (3)
H12B1.06540.76400.92410.051*
C13B0.92505 (14)0.67347 (12)0.84472 (11)0.0392 (3)
H13B0.92140.62300.89120.047*
C14B1.11991 (17)0.92395 (13)0.81796 (13)0.0517 (4)
H14C1.08450.99000.81560.062*
H14D1.16630.91730.88360.062*
C16B1.30486 (17)1.01232 (13)0.77300 (14)0.0547 (4)
H16K1.35181.00700.72570.082*
H16L1.35321.00310.83660.082*
H16M1.27581.08040.77040.082*
N1B0.75502 (10)0.57790 (9)0.72934 (9)0.0333 (3)
O1B0.59829 (9)0.49057 (8)0.59003 (7)0.0402 (2)
O2B0.41492 (9)0.33925 (9)0.52316 (7)0.0400 (2)
H1A0.023 (2)0.7711 (18)0.4586 (16)0.085 (7)*
H1B0.701 (2)0.5644 (18)0.6580 (17)0.089 (7)*
H1C0.235 (2)0.5505 (19)0.9370 (18)0.097 (8)*
H5A0.101 (2)1.0706 (16)0.5252 (15)0.072 (7)*
H5B0.440 (2)0.3985 (18)0.4978 (16)0.079 (7)*
H5C0.069 (2)0.4157 (19)0.9650 (18)0.087 (8)*
H7A0.1778 (16)0.6796 (14)0.3642 (12)0.050 (5)*
H7B0.7716 (15)0.4995 (12)0.8521 (12)0.044 (4)*
H7C0.3628 (15)0.4447 (12)0.8263 (11)0.037 (4)*
C1A0.20614 (13)0.83448 (11)0.41888 (10)0.0362 (3)
C2A0.31409 (14)0.85933 (13)0.38903 (12)0.0443 (4)
H2A0.34500.80810.35780.053*
C3A0.37295 (14)0.95801 (13)0.40592 (13)0.0472 (4)
H3A0.44390.97370.38640.057*
C4A0.32645 (14)1.03589 (12)0.45274 (12)0.0424 (4)
H4A0.36761.10270.46450.051*
C5A0.22182 (13)1.01489 (11)0.48125 (11)0.0374 (3)
C6A0.15744 (13)0.91300 (11)0.46528 (10)0.0351 (3)
C7A0.14494 (13)0.73221 (11)0.40063 (11)0.0371 (3)
C8A0.02951 (13)0.61121 (10)0.40566 (10)0.0339 (3)
C9A0.13686 (14)0.60527 (11)0.43360 (11)0.0393 (3)
H9A0.15660.66240.46560.047*
C10A0.21506 (14)0.51438 (11)0.41402 (11)0.0398 (3)
H10A0.28670.51110.43360.048*
C11A0.18835 (13)0.42820 (11)0.36572 (10)0.0347 (3)
C12A0.08046 (14)0.43637 (11)0.33756 (11)0.0402 (3)
H12A0.06120.37980.30450.048*
C13A0.00149 (14)0.52570 (11)0.35715 (12)0.0409 (3)
H13A0.07040.52890.33800.049*
C14A0.27040 (14)0.32742 (11)0.34356 (11)0.0393 (3)
H14A0.23100.27210.38070.047*
H14B0.28040.30890.27550.047*
C15A0.39285 (16)0.32782 (13)0.36385 (13)0.0509 (4)
H15A0.43410.38210.32660.061*
H15B0.38460.34480.43210.061*
C16A0.46688 (18)0.22241 (15)0.33830 (15)0.0619 (5)
H16D0.54370.22590.35240.093*
H16E0.42700.16860.37580.093*
H16F0.47670.20610.27050.093*
N1A0.04501 (11)0.70683 (9)0.42637 (9)0.0357 (3)
O1A0.05774 (9)0.89431 (8)0.49299 (8)0.0427 (3)
O2A0.17798 (11)1.09159 (8)0.52600 (9)0.0464 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C15B0.0710 (14)0.0682 (12)0.0782 (14)0.0263 (11)0.0370 (11)0.0294 (11)
C16C0.105 (2)0.0791 (15)0.0895 (17)0.0477 (14)0.0382 (15)0.0118 (13)
C1C0.0338 (8)0.0373 (7)0.0392 (8)0.0047 (6)0.0083 (6)0.0088 (6)
C2C0.0433 (9)0.0405 (8)0.0486 (9)0.0061 (7)0.0136 (7)0.0053 (7)
C3C0.0518 (10)0.0365 (8)0.0495 (9)0.0035 (7)0.0094 (7)0.0032 (7)
C4C0.0409 (9)0.0398 (8)0.0455 (9)0.0043 (7)0.0047 (7)0.0108 (7)
C5C0.0333 (8)0.0430 (8)0.0390 (8)0.0034 (6)0.0077 (6)0.0139 (6)
C6C0.0334 (8)0.0363 (7)0.0361 (7)0.0031 (6)0.0060 (6)0.0092 (6)
C7C0.0332 (8)0.0426 (8)0.0375 (7)0.0067 (6)0.0106 (6)0.0088 (6)
C8C0.0357 (8)0.0395 (7)0.0313 (7)0.0000 (6)0.0102 (6)0.0073 (6)
C9C0.0419 (9)0.0437 (8)0.0402 (8)0.0051 (7)0.0138 (7)0.0039 (6)
C10C0.0568 (10)0.0404 (8)0.0410 (8)0.0000 (7)0.0147 (7)0.0008 (6)
C11C0.0493 (10)0.0500 (9)0.0317 (7)0.0097 (7)0.0094 (7)0.0024 (6)
C12C0.0372 (9)0.0536 (9)0.0456 (9)0.0023 (7)0.0135 (7)0.0030 (7)
C13C0.0380 (9)0.0416 (8)0.0466 (9)0.0023 (6)0.0133 (7)0.0035 (6)
C14C0.0588 (12)0.0574 (11)0.0528 (10)0.0184 (9)0.0135 (9)0.0063 (8)
C15C0.0825 (15)0.0599 (11)0.0639 (12)0.0278 (11)0.0281 (11)0.0048 (9)
N1C0.0330 (7)0.0389 (6)0.0388 (7)0.0022 (5)0.0118 (5)0.0074 (5)
O1C0.0356 (6)0.0443 (6)0.0485 (6)0.0006 (5)0.0166 (5)0.0010 (5)
O2C0.0328 (6)0.0509 (7)0.0493 (6)0.0021 (5)0.0114 (5)0.0057 (5)
C1B0.0319 (7)0.0347 (7)0.0348 (7)0.0040 (6)0.0092 (6)0.0026 (6)
C2B0.0420 (9)0.0448 (8)0.0352 (8)0.0008 (7)0.0076 (6)0.0074 (6)
C3B0.0439 (9)0.0394 (8)0.0438 (8)0.0015 (7)0.0143 (7)0.0095 (6)
C4B0.0329 (8)0.0343 (7)0.0435 (8)0.0006 (6)0.0134 (6)0.0006 (6)
C5B0.0302 (7)0.0368 (7)0.0343 (7)0.0048 (6)0.0099 (6)0.0021 (6)
C6B0.0307 (7)0.0335 (7)0.0342 (7)0.0046 (6)0.0115 (6)0.0028 (5)
C7B0.0321 (8)0.0388 (7)0.0324 (7)0.0035 (6)0.0068 (6)0.0028 (6)
C8B0.0314 (7)0.0338 (7)0.0358 (7)0.0028 (6)0.0088 (6)0.0007 (6)
C9B0.0407 (8)0.0409 (8)0.0345 (7)0.0053 (6)0.0079 (6)0.0043 (6)
C10B0.0541 (10)0.0357 (8)0.0454 (9)0.0032 (7)0.0155 (7)0.0102 (6)
C11B0.0475 (9)0.0336 (7)0.0447 (8)0.0024 (6)0.0157 (7)0.0009 (6)
C12B0.0425 (9)0.0436 (8)0.0372 (8)0.0049 (7)0.0065 (6)0.0007 (6)
C13B0.0398 (8)0.0393 (8)0.0363 (7)0.0027 (6)0.0068 (6)0.0067 (6)
C14B0.0614 (11)0.0386 (8)0.0553 (10)0.0092 (8)0.0200 (8)0.0031 (7)
C16B0.0539 (11)0.0424 (9)0.0711 (12)0.0034 (8)0.0245 (9)0.0001 (8)
N1B0.0303 (6)0.0358 (6)0.0331 (6)0.0009 (5)0.0068 (5)0.0017 (5)
O1B0.0414 (6)0.0421 (5)0.0337 (5)0.0057 (4)0.0060 (4)0.0062 (4)
O2B0.0393 (6)0.0429 (6)0.0346 (5)0.0061 (5)0.0062 (4)0.0002 (4)
C1A0.0305 (8)0.0379 (7)0.0393 (8)0.0026 (6)0.0068 (6)0.0032 (6)
C2A0.0334 (8)0.0466 (9)0.0552 (9)0.0050 (7)0.0150 (7)0.0001 (7)
C3A0.0309 (8)0.0517 (9)0.0603 (10)0.0007 (7)0.0155 (7)0.0040 (8)
C4A0.0335 (8)0.0393 (8)0.0512 (9)0.0036 (6)0.0061 (7)0.0044 (7)
C5A0.0347 (8)0.0351 (7)0.0403 (8)0.0012 (6)0.0056 (6)0.0012 (6)
C6A0.0298 (7)0.0364 (7)0.0380 (7)0.0014 (6)0.0062 (6)0.0029 (6)
C7A0.0332 (8)0.0372 (7)0.0407 (8)0.0047 (6)0.0078 (6)0.0006 (6)
C8A0.0340 (8)0.0307 (7)0.0361 (7)0.0026 (6)0.0063 (6)0.0011 (5)
C9A0.0419 (9)0.0346 (7)0.0442 (8)0.0020 (6)0.0167 (7)0.0059 (6)
C10A0.0373 (8)0.0390 (8)0.0453 (8)0.0004 (6)0.0160 (7)0.0022 (6)
C11A0.0373 (8)0.0335 (7)0.0324 (7)0.0037 (6)0.0063 (6)0.0030 (5)
C12A0.0412 (9)0.0318 (7)0.0492 (9)0.0068 (6)0.0125 (7)0.0033 (6)
C13A0.0341 (8)0.0373 (8)0.0542 (9)0.0056 (6)0.0157 (7)0.0013 (7)
C14A0.0446 (9)0.0359 (7)0.0358 (7)0.0013 (6)0.0086 (6)0.0010 (6)
C15A0.0488 (10)0.0472 (9)0.0567 (10)0.0099 (8)0.0186 (8)0.0079 (8)
C16A0.0590 (12)0.0602 (11)0.0645 (12)0.0228 (9)0.0223 (9)0.0141 (9)
N1A0.0341 (7)0.0320 (6)0.0409 (7)0.0019 (5)0.0095 (5)0.0002 (5)
O1A0.0377 (6)0.0362 (5)0.0581 (7)0.0026 (4)0.0218 (5)0.0048 (5)
O2A0.0415 (7)0.0352 (5)0.0632 (7)0.0043 (5)0.0172 (5)0.0069 (5)
Geometric parameters (Å, º) top
C15B—C14B1.472 (3)C8B—C9B1.393 (2)
C15B—C16B1.502 (2)C8B—N1B1.4146 (18)
C15B—H15C0.97C9B—C10B1.383 (2)
C15B—H15D0.97C9B—H9B0.93
C16C—C15C1.508 (3)C10B—C11B1.389 (2)
C16C—H16A0.96C10B—H10B0.93
C16C—H16B0.96C11B—C12B1.390 (2)
C16C—H16C0.96C11B—C14B1.513 (2)
C1C—C7C1.414 (2)C12B—C13B1.381 (2)
C1C—C2C1.414 (2)C12B—H12B0.93
C1C—C6C1.426 (2)C13B—H13B0.93
C2C—C3C1.362 (2)C14B—H14C0.97
C2C—H2C0.93C14B—H14D0.97
C3C—C4C1.402 (2)C16B—H16K0.96
C3C—H3C0.93C16B—H16L0.96
C4C—C5C1.367 (2)C16B—H16M0.96
C4C—H4C0.93N1B—H1B1.06 (2)
C5C—O2C1.3642 (19)O2B—H5B0.89 (2)
C5C—C6C1.420 (2)C1A—C7A1.416 (2)
C6C—O1C1.3060 (18)C1A—C2A1.417 (2)
C7C—N1C1.3065 (19)C1A—C6A1.423 (2)
C7C—H7C0.974 (17)C2A—C3A1.365 (2)
C8C—C13C1.387 (2)C2A—H2A0.93
C8C—C9C1.390 (2)C3A—C4A1.405 (2)
C8C—N1C1.4139 (19)C3A—H3A0.93
C9C—C10C1.380 (2)C4A—C5A1.366 (2)
C9C—H9C0.93C4A—H4A0.93
C10C—C11C1.390 (2)C5A—O2A1.3611 (18)
C10C—H10C0.93C5A—C6A1.424 (2)
C11C—C12C1.384 (2)C6A—O1A1.3034 (18)
C11C—C14C1.505 (2)C7A—N1A1.3034 (19)
C12C—C13C1.385 (2)C7A—H7A0.998 (18)
C12C—H12C0.93C8A—C9A1.384 (2)
C13C—H13C0.93C8A—C13A1.389 (2)
C14C—C15C1.505 (3)C8A—N1A1.4125 (18)
C14C—H14E0.97C9A—C10A1.385 (2)
C14C—H14K0.97C9A—H9A0.93
C15C—H15E0.97C10A—C11A1.388 (2)
C15C—H15K0.97C10A—H10A0.93
N1C—H1C1.08 (3)C11A—C12A1.390 (2)
O2C—H5C0.92 (2)C11A—C14A1.509 (2)
C1B—C7B1.417 (2)C12A—C13A1.375 (2)
C1B—C6B1.4205 (19)C12A—H12A0.93
C1B—C2B1.421 (2)C13A—H13A0.93
C2B—C3B1.361 (2)C14A—C15A1.510 (2)
C2B—H2B0.93C14A—H14A0.97
C3B—C4B1.409 (2)C14A—H14B0.97
C3B—H3B0.93C15A—C16A1.518 (2)
C4B—C5B1.369 (2)C15A—H15A0.97
C4B—H4B0.93C15A—H15B0.97
C5B—O2B1.3593 (17)C16A—H16D0.96
C5B—C6B1.423 (2)C16A—H16E0.96
C6B—O1B1.3028 (17)C16A—H16F0.96
C7B—N1B1.3068 (19)N1A—H1A1.02 (2)
C7B—H7B0.977 (17)O2A—H5A0.91 (2)
C8B—C13B1.386 (2)
C14B—C15B—C16B117.01 (16)C10B—C9B—H9B120.1
C14B—C15B—H15C108.0C8B—C9B—H9B120.1
C16B—C15B—H15C108.0C9B—C10B—C11B121.61 (14)
C14B—C15B—H15D108.0C9B—C10B—H10B119.2
C16B—C15B—H15D108.0C11B—C10B—H10B119.2
H15C—C15B—H15D107.3C10B—C11B—C12B117.52 (14)
C15C—C16C—H16A109.5C10B—C11B—C14B121.90 (14)
C15C—C16C—H16B109.5C12B—C11B—C14B120.55 (15)
H16A—C16C—H16B109.5C13B—C12B—C11B121.84 (14)
C15C—C16C—H16C109.5C13B—C12B—H12B119.1
H16A—C16C—H16C109.5C11B—C12B—H12B119.1
H16B—C16C—H16C109.5C12B—C13B—C8B119.78 (14)
C7C—C1C—C2C120.06 (14)C12B—C13B—H13B120.1
C7C—C1C—C6C119.77 (13)C8B—C13B—H13B120.1
C2C—C1C—C6C120.12 (14)C15B—C14B—C11B114.85 (14)
C3C—C2C—C1C120.24 (15)C15B—C14B—H14C108.6
C3C—C2C—H2C119.9C11B—C14B—H14C108.6
C1C—C2C—H2C119.9C15B—C14B—H14D108.6
C2C—C3C—C4C120.29 (15)C11B—C14B—H14D108.6
C2C—C3C—H3C119.9H14C—C14B—H14D107.5
C4C—C3C—H3C119.9C15B—C16B—H16K109.5
C5C—C4C—C3C120.98 (15)C15B—C16B—H16L109.5
C5C—C4C—H4C119.5H16K—C16B—H16L109.5
C3C—C4C—H4C119.5C15B—C16B—H16M109.5
O2C—C5C—C4C119.98 (14)H16K—C16B—H16M109.5
O2C—C5C—C6C119.21 (14)H16L—C16B—H16M109.5
C4C—C5C—C6C120.80 (14)C7B—N1B—C8B127.37 (12)
O1C—C6C—C5C120.01 (13)C7B—N1B—H1B109.2 (13)
O1C—C6C—C1C122.46 (13)C8B—N1B—H1B123.4 (13)
C5C—C6C—C1C117.53 (13)C5B—O2B—H5B107.0 (14)
N1C—C7C—C1C121.75 (14)C7A—C1A—C2A120.17 (14)
N1C—C7C—H7C117.8 (9)C7A—C1A—C6A119.76 (13)
C1C—C7C—H7C120.5 (9)C2A—C1A—C6A120.05 (13)
C13C—C8C—C9C119.41 (14)C3A—C2A—C1A120.36 (15)
C13C—C8C—N1C122.68 (13)C3A—C2A—H2A119.8
C9C—C8C—N1C117.88 (13)C1A—C2A—H2A119.8
C10C—C9C—C8C120.04 (15)C2A—C3A—C4A120.10 (15)
C10C—C9C—H9C120.0C2A—C3A—H3A119.9
C8C—C9C—H9C120.0C4A—C3A—H3A119.9
C9C—C10C—C11C121.47 (15)C5A—C4A—C3A120.99 (14)
C9C—C10C—H10C119.3C5A—C4A—H4A119.5
C11C—C10C—H10C119.3C3A—C4A—H4A119.5
C12C—C11C—C10C117.58 (15)O2A—C5A—C4A120.07 (13)
C12C—C11C—C14C120.88 (16)O2A—C5A—C6A119.07 (13)
C10C—C11C—C14C121.50 (16)C4A—C5A—C6A120.86 (14)
C11C—C12C—C13C121.96 (15)O1A—C6A—C1A122.32 (13)
C11C—C12C—H12C119.0O1A—C6A—C5A120.06 (13)
C13C—C12C—H12C119.0C1A—C6A—C5A117.63 (13)
C12C—C13C—C8C119.53 (15)N1A—C7A—C1A121.83 (14)
C12C—C13C—H13C120.2N1A—C7A—H7A119.6 (10)
C8C—C13C—H13C120.2C1A—C7A—H7A118.5 (10)
C11C—C14C—C15C112.95 (15)C9A—C8A—C13A119.41 (13)
C11C—C14C—H14E109.0C9A—C8A—N1A117.20 (12)
C15C—C14C—H14E109.0C13A—C8A—N1A123.37 (13)
C11C—C14C—H14K109.0C8A—C9A—C10A120.16 (13)
C15C—C14C—H14K109.0C8A—C9A—H9A119.9
H14E—C14C—H14K107.8C10A—C9A—H9A119.9
C14C—C15C—C16C114.12 (18)C9A—C10A—C11A121.14 (14)
C14C—C15C—H15E108.7C9A—C10A—H10A119.4
C16C—C15C—H15E108.7C11A—C10A—H10A119.4
C14C—C15C—H15K108.7C10A—C11A—C12A117.65 (13)
C16C—C15C—H15K108.7C10A—C11A—C14A122.92 (13)
H15E—C15C—H15K107.6C12A—C11A—C14A119.43 (13)
C7C—N1C—C8C126.57 (13)C13A—C12A—C11A121.90 (13)
C7C—N1C—H1C107.1 (13)C13A—C12A—H12A119.1
C8C—N1C—H1C126.3 (13)C11A—C12A—H12A119.1
C5C—O2C—H5C112.3 (15)C12A—C13A—C8A119.73 (14)
C7B—C1B—C6B119.51 (13)C12A—C13A—H13A120.1
C7B—C1B—C2B120.87 (13)C8A—C13A—H13A120.1
C6B—C1B—C2B119.60 (13)C11A—C14A—C15A117.08 (13)
C3B—C2B—C1B120.45 (14)C11A—C14A—H14A108.0
C3B—C2B—H2B119.8C15A—C14A—H14A108.0
C1B—C2B—H2B119.8C11A—C14A—H14B108.0
C2B—C3B—C4B120.46 (14)C15A—C14A—H14B108.0
C2B—C3B—H3B119.8H14A—C14A—H14B107.3
C4B—C3B—H3B119.8C14A—C15A—C16A112.08 (15)
C5B—C4B—C3B120.54 (14)C14A—C15A—H15A109.2
C5B—C4B—H4B119.7C16A—C15A—H15A109.2
C3B—C4B—H4B119.7C14A—C15A—H15B109.2
O2B—C5B—C4B120.72 (13)C16A—C15A—H15B109.2
O2B—C5B—C6B118.48 (12)H15A—C15A—H15B107.9
C4B—C5B—C6B120.80 (13)C15A—C16A—H16D109.5
O1B—C6B—C1B122.10 (13)C15A—C16A—H16E109.5
O1B—C6B—C5B119.75 (12)H16D—C16A—H16E109.5
C1B—C6B—C5B118.15 (12)C15A—C16A—H16F109.5
N1B—C7B—C1B121.44 (13)H16D—C16A—H16F109.5
N1B—C7B—H7B120.8 (10)H16E—C16A—H16F109.5
C1B—C7B—H7B117.7 (10)C7A—N1A—C8A127.46 (13)
C13B—C8B—C9B119.43 (13)C7A—N1A—H1A108.7 (13)
C13B—C8B—N1B123.12 (13)C8A—N1A—H1A123.5 (13)
C9B—C8B—N1B117.42 (13)C5A—O2A—H5A108.3 (13)
C10B—C9B—C8B119.80 (14)
C7C—C1C—C2C—C3C176.72 (15)C13B—C8B—C9B—C10B0.7 (2)
C6C—C1C—C2C—C3C0.8 (2)N1B—C8B—C9B—C10B177.44 (13)
C1C—C2C—C3C—C4C0.6 (2)C8B—C9B—C10B—C11B0.2 (2)
C2C—C3C—C4C—C5C0.8 (2)C9B—C10B—C11B—C12B0.6 (2)
C3C—C4C—C5C—O2C178.86 (13)C9B—C10B—C11B—C14B177.71 (15)
C3C—C4C—C5C—C6C0.5 (2)C10B—C11B—C12B—C13B1.0 (2)
O2C—C5C—C6C—O1C2.0 (2)C14B—C11B—C12B—C13B177.33 (15)
C4C—C5C—C6C—O1C178.63 (13)C11B—C12B—C13B—C8B0.6 (2)
O2C—C5C—C6C—C1C177.47 (12)C9B—C8B—C13B—C12B0.3 (2)
C4C—C5C—C6C—C1C1.9 (2)N1B—C8B—C13B—C12B177.72 (14)
C7C—C1C—C6C—O1C4.0 (2)C16B—C15B—C14B—C11B176.99 (18)
C2C—C1C—C6C—O1C178.48 (13)C10B—C11B—C14B—C15B59.4 (2)
C7C—C1C—C6C—C5C175.51 (13)C12B—C11B—C14B—C15B118.8 (2)
C2C—C1C—C6C—C5C2.1 (2)C1B—C7B—N1B—C8B179.71 (13)
C2C—C1C—C7C—N1C177.33 (14)C13B—C8B—N1B—C7B7.4 (2)
C6C—C1C—C7C—N1C0.2 (2)C9B—C8B—N1B—C7B174.52 (14)
C13C—C8C—C9C—C10C0.8 (2)C7A—C1A—C2A—C3A179.57 (15)
N1C—C8C—C9C—C10C179.19 (13)C6A—C1A—C2A—C3A1.1 (2)
C8C—C9C—C10C—C11C0.1 (2)C1A—C2A—C3A—C4A0.3 (3)
C9C—C10C—C11C—C12C0.6 (2)C2A—C3A—C4A—C5A0.6 (2)
C9C—C10C—C11C—C14C177.07 (15)C3A—C4A—C5A—O2A179.63 (14)
C10C—C11C—C12C—C13C0.6 (2)C3A—C4A—C5A—C6A0.7 (2)
C14C—C11C—C12C—C13C177.05 (15)C7A—C1A—C6A—O1A0.6 (2)
C11C—C12C—C13C—C8C0.1 (2)C2A—C1A—C6A—O1A179.17 (14)
C9C—C8C—C13C—C12C0.8 (2)C7A—C1A—C6A—C5A179.45 (13)
N1C—C8C—C13C—C12C179.07 (13)C2A—C1A—C6A—C5A0.9 (2)
C12C—C11C—C14C—C15C79.4 (2)O2A—C5A—C6A—O1A0.3 (2)
C10C—C11C—C14C—C15C98.2 (2)C4A—C5A—C6A—O1A179.97 (14)
C11C—C14C—C15C—C16C177.3 (2)O2A—C5A—C6A—C1A179.61 (13)
C1C—C7C—N1C—C8C178.85 (13)C4A—C5A—C6A—C1A0.1 (2)
C13C—C8C—N1C—C7C23.0 (2)C2A—C1A—C7A—N1A179.46 (14)
C9C—C8C—N1C—C7C158.72 (14)C6A—C1A—C7A—N1A0.9 (2)
C7B—C1B—C2B—C3B176.83 (14)C13A—C8A—C9A—C10A0.6 (2)
C6B—C1B—C2B—C3B1.3 (2)N1A—C8A—C9A—C10A178.91 (13)
C1B—C2B—C3B—C4B0.5 (2)C8A—C9A—C10A—C11A0.5 (2)
C2B—C3B—C4B—C5B0.5 (2)C9A—C10A—C11A—C12A0.1 (2)
C3B—C4B—C5B—O2B178.82 (13)C9A—C10A—C11A—C14A179.53 (14)
C3B—C4B—C5B—C6B0.8 (2)C10A—C11A—C12A—C13A0.6 (2)
C7B—C1B—C6B—O1B3.6 (2)C14A—C11A—C12A—C13A179.01 (14)
C2B—C1B—C6B—O1B178.32 (13)C11A—C12A—C13A—C8A0.6 (2)
C7B—C1B—C6B—C5B177.09 (12)C9A—C8A—C13A—C12A0.0 (2)
C2B—C1B—C6B—C5B1.0 (2)N1A—C8A—C13A—C12A178.28 (14)
O2B—C5B—C6B—O1B0.26 (19)C10A—C11A—C14A—C15A8.2 (2)
C4B—C5B—C6B—O1B179.34 (13)C12A—C11A—C14A—C15A172.20 (14)
O2B—C5B—C6B—C1B179.63 (12)C11A—C14A—C15A—C16A179.78 (14)
C4B—C5B—C6B—C1B0.0 (2)C1A—C7A—N1A—C8A174.36 (13)
C6B—C1B—C7B—N1B0.0 (2)C9A—C8A—N1A—C7A174.64 (14)
C2B—C1B—C7B—N1B178.13 (14)C13A—C8A—N1A—C7A3.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1A1.02 (2)1.63 (2)2.5444 (16)147 (2)
N1B—H1B···O1B1.06 (2)1.57 (2)2.5229 (16)146 (2)
N1C—H1C···O1C1.08 (2)1.57 (2)2.5502 (17)149 (2)
O2A—H5A···O1Ai0.90 (2)1.89 (2)2.7032 (17)148 (2)
O2B—H5B···O1Bii0.89 (2)1.91 (2)2.7049 (15)148 (2)
O2C—H5C···O1Ciii0.92 (2)1.84 (2)2.6659 (15)148 (2)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC16H17NO2
Mr255.31
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)11.5743 (4), 12.7635 (4), 14.1706 (5)
α, β, γ (°)90.418 (3), 103.259 (3), 95.540 (3)
V3)2027.14 (11)
Z6
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.56 × 0.42 × 0.28
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.972, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
25371, 7976, 6241
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.04
No. of reflections7976
No. of parameters538
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.26

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1A1.02 (2)1.63 (2)2.5444 (16)147 (2)
N1B—H1B···O1B1.06 (2)1.57 (2)2.5229 (16)146 (2)
N1C—H1C···O1C1.08 (2)1.57 (2)2.5502 (17)149 (2)
O2A—H5A···O1Ai0.90 (2)1.89 (2)2.7032 (17)148 (2)
O2B—H5B···O1Bii0.89 (2)1.91 (2)2.7049 (15)148 (2)
O2C—H5C···O1Ciii0.92 (2)1.84 (2)2.6659 (15)148 (2)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGao, S., Huo, L.-H., Zhao, H. & Ng, S. W. (2005). Acta Cryst. E61, o192–o194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKılıç, I., Ağar, A., Erşahin, F. & Işık, Ş. (2008). Anal. Sci. 24, 151–152.  Google Scholar
First citationKrygowski, T. M., Wozniak, K., Anulewicz, R., Pawlak, D., Kolodziejski, W., Grech, E. & Szady, A. (1997). J. Phys. Chem. A, 101, 9399–9404.  CSD CrossRef CAS Web of Science Google Scholar
First citationMoustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOgawa, K. & Harada, J. (2003). J. Mol. Struct. 647, 211–216.  Web of Science CrossRef CAS Google Scholar
First citationPetek, H., Albayrak, Ç., Ağar, E. & Kalkan, H. (2006). Acta Cryst. E62, o3685–o3687.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTemel, E., Albayrak, Ç., Büyükgüngör, O. & Odabaşoğlu, M. (2006). Acta Cryst. E62, o4484–o4486.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds