organic compounds
N-(3,4-Dichlorophenyl)-3-oxobutanamide
aBhavan's Sheth R.A. College of Science, Khanpur, Ahmedabad, Gujarat 380 001, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Chemistry, M.G. Science Institute, Navrangpura, Ahmedabad, Gujarat 380 009, India, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: jjasinski@keene.edu
In the title compound. C10H9Cl2NO2, the acetamide residue is twisted out of the phenyl ring plane by 25.40 (9)°. An intramolecular C—H⋯O close contact is observed. The N atom of the butanamide unit forms an intermolecular N—H⋯O hydrogen bond with the symmetry-related carbonyl O atom, interlinking molecules into a C(4) chain along [100]. Additional C—H⋯O intermolecular interactions and Cl⋯Cl contacts [3.4364 (8) Å] contribute to the stability of the crystal packing.
Related literature
For the synthesis and biological activity of the title compound, see: Lliopoulos et al. (1986); Grissar et al. (1982). For related structures, see: Whitaker (1986, 1987, 1988); Whitaker & Walker (1987); Brown & Yadav (1984); Tai et al. (2005); Sundar et al. (2005); Guo (2004); Robin et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For density functional theory (DFT), see: Becke (1988, 1993); Hehre et al. (1986); Lee et al. (1988); Schmidt & Polik (2007). For the GAUSSIAN03 program package, see: Frisch et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536809051307/ci2974sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809051307/ci2974Isup2.hkl
The title compound was prepared by a method similar to that of Lliopoulos et al. (1986). A solution of 3,4-dichloroaniline (10 mmol) in benzene (30 ml) was added to a solution of ethyl acetoacetate (10 mmol) and the reaction mixture was refluxed for 2 h with stirring. The resulting precipitate was collected by filtration, washed several times with benzene and dried in vacuo (yield 86%). An ethanol solution of the title compound was allowed to evaporate slowly and colorless crystals of (I) were obtained after a week.
All of the H atoms were placed in their calculated positions and then refined using the riding model with C–H = 0.95–0.99 Å, N–H = 0.88Å and with Uiso(H) = 1.19–1.50Ueq(C) and 1.18Ueq(N).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97)(Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).C10H9Cl2NO2 | F(000) = 1008 |
Mr = 246.08 | Dx = 1.478 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 4228 reflections |
a = 9.7171 (4) Å | θ = 4.9–32.4° |
b = 8.2834 (5) Å | µ = 0.57 mm−1 |
c = 27.4857 (16) Å | T = 200 K |
V = 2212.3 (2) Å3 | Plate, colorless |
Z = 8 | 0.56 × 0.35 × 0.14 mm |
Oxford Diffraction Gemini diffractometer | 3745 independent reflections |
Radiation source: fine-focus sealed tube | 1910 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 32.5°, θmin = 4.9° |
ϕ and ω scans | h = −14→14 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −11→12 |
Tmin = 0.725, Tmax = 0.924 | l = −39→39 |
16980 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0532P)2 + 0.0634P] where P = (Fo2 + 2Fc2)/3 |
3745 reflections | (Δ/σ)max = 0.001 |
137 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C10H9Cl2NO2 | V = 2212.3 (2) Å3 |
Mr = 246.08 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 9.7171 (4) Å | µ = 0.57 mm−1 |
b = 8.2834 (5) Å | T = 200 K |
c = 27.4857 (16) Å | 0.56 × 0.35 × 0.14 mm |
Oxford Diffraction Gemini diffractometer | 3745 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 1910 reflections with I > 2σ(I) |
Tmin = 0.725, Tmax = 0.924 | Rint = 0.045 |
16980 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.21 e Å−3 |
3745 reflections | Δρmin = −0.27 e Å−3 |
137 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.44746 (6) | 0.24662 (8) | 0.45002 (2) | 0.0723 (2) | |
Cl2 | 0.72279 (6) | 0.05651 (7) | 0.47381 (2) | 0.0685 (2) | |
O1 | 0.79285 (11) | 0.25949 (19) | 0.23755 (5) | 0.0569 (4) | |
O2 | 0.64604 (16) | 0.07935 (16) | 0.15306 (6) | 0.0661 (4) | |
N | 0.58187 (12) | 0.24207 (16) | 0.27204 (5) | 0.0362 (3) | |
H0A | 0.4932 | 0.2505 | 0.2661 | 0.043* | |
C1 | 0.61935 (15) | 0.19559 (18) | 0.31946 (6) | 0.0335 (4) | |
C2 | 0.52923 (16) | 0.2333 (2) | 0.35679 (7) | 0.0390 (4) | |
H2A | 0.4453 | 0.2872 | 0.3496 | 0.047* | |
C3 | 0.56032 (17) | 0.1931 (2) | 0.40451 (7) | 0.0429 (4) | |
C4 | 0.68175 (19) | 0.1122 (2) | 0.41514 (7) | 0.0431 (4) | |
C5 | 0.77092 (18) | 0.0733 (2) | 0.37786 (7) | 0.0444 (4) | |
H5A | 0.8543 | 0.0185 | 0.3851 | 0.053* | |
C6 | 0.74098 (17) | 0.1129 (2) | 0.33015 (7) | 0.0401 (4) | |
H6A | 0.8027 | 0.0840 | 0.3048 | 0.048* | |
C7 | 0.66728 (16) | 0.2750 (2) | 0.23478 (7) | 0.0382 (4) | |
C8 | 0.60112 (17) | 0.3356 (2) | 0.18869 (7) | 0.0420 (4) | |
H8A | 0.6441 | 0.4395 | 0.1795 | 0.050* | |
H8B | 0.5023 | 0.3560 | 0.1949 | 0.050* | |
C9 | 0.61455 (17) | 0.2188 (2) | 0.14672 (7) | 0.0434 (4) | |
C10 | 0.5849 (2) | 0.2844 (3) | 0.09710 (8) | 0.0644 (6) | |
H10A | 0.5898 | 0.1969 | 0.0732 | 0.097* | |
H10B | 0.6529 | 0.3675 | 0.0890 | 0.097* | |
H10C | 0.4925 | 0.3319 | 0.0967 | 0.097* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0658 (4) | 0.0910 (5) | 0.0601 (3) | 0.0116 (3) | 0.0270 (3) | 0.0049 (3) |
Cl2 | 0.0810 (4) | 0.0739 (4) | 0.0507 (3) | −0.0003 (3) | −0.0064 (3) | 0.0127 (3) |
O1 | 0.0190 (6) | 0.0920 (11) | 0.0598 (8) | 0.0011 (6) | 0.0034 (5) | 0.0184 (8) |
O2 | 0.0785 (10) | 0.0437 (8) | 0.0759 (11) | 0.0137 (7) | −0.0205 (8) | 0.0024 (7) |
N | 0.0162 (5) | 0.0413 (8) | 0.0510 (8) | 0.0006 (6) | 0.0005 (6) | 0.0015 (7) |
C1 | 0.0230 (7) | 0.0275 (8) | 0.0500 (10) | −0.0048 (6) | −0.0003 (7) | −0.0027 (7) |
C2 | 0.0258 (8) | 0.0354 (9) | 0.0557 (11) | −0.0007 (7) | 0.0047 (7) | −0.0004 (8) |
C3 | 0.0395 (10) | 0.0379 (9) | 0.0514 (11) | −0.0054 (8) | 0.0113 (8) | 0.0002 (8) |
C4 | 0.0477 (10) | 0.0373 (9) | 0.0443 (11) | −0.0068 (8) | −0.0028 (8) | 0.0046 (8) |
C5 | 0.0388 (9) | 0.0372 (10) | 0.0572 (12) | 0.0056 (8) | −0.0034 (9) | 0.0019 (9) |
C6 | 0.0314 (8) | 0.0382 (10) | 0.0508 (10) | 0.0051 (7) | 0.0012 (8) | −0.0022 (8) |
C7 | 0.0232 (7) | 0.0385 (9) | 0.0530 (10) | −0.0001 (7) | 0.0013 (7) | 0.0031 (8) |
C8 | 0.0285 (8) | 0.0382 (10) | 0.0593 (12) | 0.0045 (8) | 0.0020 (8) | 0.0094 (8) |
C9 | 0.0276 (8) | 0.0425 (11) | 0.0601 (12) | 0.0027 (8) | −0.0050 (8) | 0.0089 (9) |
C10 | 0.0637 (13) | 0.0739 (15) | 0.0558 (13) | 0.0119 (11) | −0.0047 (11) | 0.0150 (11) |
Cl1—C3 | 1.7215 (18) | C4—C5 | 1.380 (3) |
Cl2—C4 | 1.7241 (19) | C5—C6 | 1.383 (3) |
O1—C7 | 1.2292 (18) | C5—H5A | 0.95 |
O2—C9 | 1.207 (2) | C6—H6A | 0.95 |
N—C7 | 1.346 (2) | C7—C8 | 1.507 (2) |
N—C1 | 1.407 (2) | C8—C9 | 1.511 (3) |
N—H0A | 0.88 | C8—H8A | 0.99 |
C1—C2 | 1.385 (2) | C8—H8B | 0.99 |
C1—C6 | 1.397 (2) | C9—C10 | 1.496 (3) |
C2—C3 | 1.387 (3) | C10—H10A | 0.98 |
C2—H2A | 0.95 | C10—H10B | 0.98 |
C3—C4 | 1.388 (3) | C10—H10C | 0.98 |
C7—N—C1 | 126.91 (13) | C1—C6—H6A | 120.2 |
C7—N—H0A | 116.5 | O1—C7—N | 122.94 (16) |
C1—N—H0A | 116.5 | O1—C7—C8 | 120.69 (16) |
C2—C1—C6 | 119.32 (16) | N—C7—C8 | 116.37 (13) |
C2—C1—N | 117.45 (14) | C7—C8—C9 | 113.05 (15) |
C6—C1—N | 123.22 (15) | C7—C8—H8A | 109.0 |
C1—C2—C3 | 120.60 (15) | C9—C8—H8A | 109.0 |
C1—C2—H2A | 119.7 | C7—C8—H8B | 109.0 |
C3—C2—H2A | 119.7 | C9—C8—H8B | 109.0 |
C2—C3—C4 | 120.01 (16) | H8A—C8—H8B | 107.8 |
C2—C3—Cl1 | 119.13 (13) | O2—C9—C10 | 121.89 (19) |
C4—C3—Cl1 | 120.86 (15) | O2—C9—C8 | 121.61 (18) |
C5—C4—C3 | 119.36 (17) | C10—C9—C8 | 116.50 (17) |
C5—C4—Cl2 | 119.13 (14) | C9—C10—H10A | 109.5 |
C3—C4—Cl2 | 121.51 (15) | C9—C10—H10B | 109.5 |
C4—C5—C6 | 121.12 (16) | H10A—C10—H10B | 109.5 |
C4—C5—H5A | 119.4 | C9—C10—H10C | 109.5 |
C6—C5—H5A | 119.4 | H10A—C10—H10C | 109.5 |
C5—C6—C1 | 119.57 (16) | H10B—C10—H10C | 109.5 |
C5—C6—H6A | 120.2 | ||
C7—N—C1—C2 | 152.83 (15) | Cl2—C4—C5—C6 | 178.76 (14) |
C7—N—C1—C6 | −27.9 (2) | C4—C5—C6—C1 | 0.9 (3) |
C6—C1—C2—C3 | 1.5 (2) | C2—C1—C6—C5 | −1.5 (2) |
N—C1—C2—C3 | −179.14 (15) | N—C1—C6—C5 | 179.22 (15) |
C1—C2—C3—C4 | −1.0 (3) | C1—N—C7—O1 | 3.9 (3) |
C1—C2—C3—Cl1 | 178.40 (13) | C1—N—C7—C8 | −175.10 (15) |
C2—C3—C4—C5 | 0.3 (3) | O1—C7—C8—C9 | 67.3 (2) |
Cl1—C3—C4—C5 | −179.00 (14) | N—C7—C8—C9 | −113.63 (17) |
C2—C3—C4—Cl2 | −178.72 (14) | C7—C8—C9—O2 | 15.9 (2) |
Cl1—C3—C4—Cl2 | 1.9 (2) | C7—C8—C9—C10 | −164.88 (15) |
C3—C4—C5—C6 | −0.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N—H0A···O1i | 0.88 | 1.95 | 2.824 (2) | 172 |
C6—H6A···O1 | 0.95 | 2.35 | 2.865 (2) | 113 |
C2—H2A···O2ii | 0.95 | 2.58 | 3.345 (2) | 138 |
C8—H8A···O2iii | 0.99 | 2.45 | 3.327 (2) | 147 |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+3/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C10H9Cl2NO2 |
Mr | 246.08 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 200 |
a, b, c (Å) | 9.7171 (4), 8.2834 (5), 27.4857 (16) |
V (Å3) | 2212.3 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.57 |
Crystal size (mm) | 0.56 × 0.35 × 0.14 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.725, 0.924 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16980, 3745, 1910 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.756 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.123, 1.04 |
No. of reflections | 3745 |
No. of parameters | 137 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.27 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97)(Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N—H0A···O1i | 0.88 | 1.95 | 2.824 (2) | 172 |
C6—H6A···O1 | 0.95 | 2.35 | 2.865 (2) | 113 |
C2—H2A···O2ii | 0.95 | 2.58 | 3.345 (2) | 138 |
C8—H8A···O2iii | 0.99 | 2.45 | 3.327 (2) | 147 |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+3/2, y+1/2, z. |
Acknowledgements
RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Becke, A. D. (1988). Phys. Rev. A38, 3098–100. CrossRef Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Eng. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brown, C. J. & Yadav, H. R. (1984). Acta Cryst. C40, 564–566. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Grissar, J. M., Schnettler, R. A. & Dage, R. C. (1982). US Patent 4329470. Google Scholar
Guo, M.-L. (2004). Acta Cryst. E60, o736–o737. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hehre, W. J., Random, L., Schleyer, P. & Pople, J. A. (1986). Ab Initio Molecular Orbital Theory. New York: Wiley. Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B37, 785–789. CrossRef Web of Science Google Scholar
Lliopoulos, P., Fallon, G. D. & Murray, S. (1986). J. Chem. Soc. Dalton Trans. pp. 437–443. Google Scholar
Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Robin, M., Galy, J.-P., Kenz, A. & Pierrot, M. (2002). Acta Cryst. E58, o644–o645. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro.WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sundar, T. V., Parthasarathi, V., Walfort, B., Lang, H., Piplani, P. & Malik, R. (2005). Acta Cryst. E61, o2868–o2870. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tai, X.-S., Liu, W.-Y., Liu, Y.-Z. & Li, Y.-Z. (2005). Acta Cryst. E61, o389–o390. Web of Science CSD CrossRef IUCr Journals Google Scholar
Whitaker, A. (1986). Acta Cryst. C42, 1566–1569. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Whitaker, A. (1987). Acta Cryst. C43, 2141–2144. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Whitaker, A. (1988). Acta Cryst. C44, 1587–1590. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Whitaker, A. & Walker, N. P. C. (1987). Acta Cryst. C43, 2137–2141. CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acetoacetanilide, a very useful chemical intermediate in the production of pigments (Whitaker, 1986, 1987, 1988; Whitaker & Walker, 1987; Brown & Yadav, 1984) possesses cardiotonic, antihypertensive and anti-thrombic properties (Grissar et al., 1982). The title compound, (I), is used as an intermediate in the synthesis of acetoacetanilide and a variety of other biologically important heterocyclic compounds containing pyridine, pyrimidine and imidazole. In the view of the importance of (I), its crystal structure is determined.
In (I), the C═O bond lengths are 1.2292 (18) Å and 1.207 (2) Å which confirms that the compound is in the keto form (Fig. 1). The phenyl ring (C1–C6) is planar with a maximum deviation of 0.007 (1) Å for the C1 atom, from the least-squares plane of the ring. The short C—N distances of 1.407 (2) and 1.346 (2) Å and C1—N—C7 larger bond angle of 126.9 (13)° may be attributed to the involvement of the butanamide N atom in the intermolecular N—H···O interaction and a short intramolecular contact (1.95 Å) between O1 and H0A which is less than their van der Waals radii (2.72 Å). Similar short contacts are also observed in other related structures containing the acetamide residue (Sundar et al., 2005; Guo, 2004; Robin et al., 2002). Atoms N, C7, O1 and C8 forming the acetamide residue are coplanar with a maximum deviation of -0.005 (2) Å for the C7 atom. The acetamide residue is twisted considerably from the least-squares plane of phenyl ring having a dihedral angle of 25.40 (9)°. Atoms C8, C9, O2 and C10 from the O-acetyl group are also coplanar displaying a dihedral angle of 49.21 (10)° with the mean plane of the phenyl ring (C1—C6) and 73.78 (11)° with the least-squares plane of the acetamide residue.
The N atom in the butanamide moiety forms an intermolecular hydrogen bond (N—H0A···O1) with the symmetry related carbonyl oxygen atom interlinking molecules into an one-dimensional chain along the [100] (Fig. 2 and Table 1) forming a C(4) graph-set motif (Bernstein et al.,1995). Torsional angles C7—C8—C9—O2 (15.9 (2)°) and O1—C7—C8—C9 (67.3 (2)°) about C8—C9 and C7—C8, respectively, suggest the involvement of O1 and O2 atoms in a weak C—H···O1 intermolecular hydrogen bonding interaction. Atoms C2 from the phenyl ring (C1–C6) and C8 from the butanamide group form weak, bifurcated intermolecular hydrogen bonds with nearby symmetry related O2 atoms (Table 2). In addition, a short intramolecular C—H···O contact (Table 2) and a weak intermolecular Cl···Cl contact (3.4364 (8) Å) exists which influences crystal packing.
Following a density functional theory calculation (Schmidt & Polik 2007) at the B3LYP 6–31-G(d) level (Becke, 1988, 1993; Lee et al. 1988; Hehre et al. 1986) with the GAUSSIAN03 program package (Frisch et al. 2004) the angle between the mean planes of the C8/C9/O2/C10 and N/C7/O1/C8 groups change from 73.7 (8)° to 33.0 (2)°. The angle between the least-squares plane of the benzene ring and the mean planes of the C8/C9/O2/C10 and N/C7O1/C8 groups change from 49.2 (1)° and 25.4 (1)° to 30.1 (5)° and 3.6 (5)°, respectively. This results in twisting the C8═O2 keto group to be in the proximity of the butanamide N atom forming a pseudo intramolecular N—H···O hydrogen bond interaction (D–H = 1.02 (0) Å; H···A = 1.92 (0) Å; D···A = 2.76 (1) Å; D–H···A = 137.6 (9)°). These results support the collective effects of the intra and intermolecular hydrogen bonding described above influencing crystal packing.