organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o58-o59

N-(3,4-Di­chloro­phen­yl)-3-oxo­butanamide

aBhavan's Sheth R.A. College of Science, Khanpur, Ahmedabad, Gujarat 380 001, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Chemistry, M.G. Science Institute, Navrangpura, Ahmedabad, Gujarat 380 009, India, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 21 November 2009; accepted 28 November 2009; online 4 December 2009)

In the title compound. C10H9Cl2NO2, the acetamide residue is twisted out of the phenyl ring plane by 25.40 (9)°. An intra­molecular C—H⋯O close contact is observed. The N atom of the butanamide unit forms an inter­molecular N—H⋯O hydrogen bond with the symmetry-related carbonyl O atom, inter­linking mol­ecules into a C(4) chain along [100]. Additional C—H⋯O inter­molecular inter­actions and Cl⋯Cl contacts [3.4364 (8) Å] contribute to the stability of the crystal packing.

Related literature

For the synthesis and biological activity of the title compound, see: Lliopoulos et al. (1986[Lliopoulos, P., Fallon, G. D. & Murray, S. (1986). J. Chem. Soc. Dalton Trans. pp. 437-443.]); Grissar et al. (1982[Grissar, J. M., Schnettler, R. A. & Dage, R. C. (1982). US Patent 4329470.]). For related structures, see: Whitaker (1986[Whitaker, A. (1986). Acta Cryst. C42, 1566-1569.], 1987[Whitaker, A. (1987). Acta Cryst. C43, 2141-2144.], 1988[Whitaker, A. (1988). Acta Cryst. C44, 1587-1590.]); Whitaker & Walker (1987[Whitaker, A. & Walker, N. P. C. (1987). Acta Cryst. C43, 2137-2141.]); Brown & Yadav (1984[Brown, C. J. & Yadav, H. R. (1984). Acta Cryst. C40, 564-566.]); Tai et al. (2005[Tai, X.-S., Liu, W.-Y., Liu, Y.-Z. & Li, Y.-Z. (2005). Acta Cryst. E61, o389-o390.]); Sundar et al. (2005[Sundar, T. V., Parthasarathi, V., Walfort, B., Lang, H., Piplani, P. & Malik, R. (2005). Acta Cryst. E61, o2868-o2870.]); Guo (2004[Guo, M.-L. (2004). Acta Cryst. E60, o736-o737.]); Robin et al. (2002[Robin, M., Galy, J.-P., Kenz, A. & Pierrot, M. (2002). Acta Cryst. E58, o644-o645.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Eng. 34, 1555-1573.]). For density functional theory (DFT), see: Becke (1988[Becke, A. D. (1988). Phys. Rev. A38, 3098-100.], 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]); Hehre et al. (1986[Hehre, W. J., Random, L., Schleyer, P. & Pople, J. A. (1986). Ab Initio Molecular Orbital Theory. New York: Wiley.]); Lee et al. (1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B37, 785-789.]); Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro.WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net.]). For the GAUSSIAN03 program package, see: Frisch et al. (2004[Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9Cl2NO2

  • Mr = 246.08

  • Orthorhombic, P b c a

  • a = 9.7171 (4) Å

  • b = 8.2834 (5) Å

  • c = 27.4857 (16) Å

  • V = 2212.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 200 K

  • 0.56 × 0.35 × 0.14 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.725, Tmax = 0.924

  • 16980 measured reflections

  • 3745 independent reflections

  • 1910 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.123

  • S = 1.04

  • 3745 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O1i 0.88 1.95 2.824 (2) 172
C6—H6A⋯O1 0.95 2.35 2.865 (2) 113
C2—H2A⋯O2ii 0.95 2.58 3.345 (2) 138
C8—H8A⋯O2iii 0.99 2.45 3.327 (2) 147
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Acetoacetanilide, a very useful chemical intermediate in the production of pigments (Whitaker, 1986, 1987, 1988; Whitaker & Walker, 1987; Brown & Yadav, 1984) possesses cardiotonic, antihypertensive and anti-thrombic properties (Grissar et al., 1982). The title compound, (I), is used as an intermediate in the synthesis of acetoacetanilide and a variety of other biologically important heterocyclic compounds containing pyridine, pyrimidine and imidazole. In the view of the importance of (I), its crystal structure is determined.

In (I), the CO bond lengths are 1.2292 (18) Å and 1.207 (2) Å which confirms that the compound is in the keto form (Fig. 1). The phenyl ring (C1–C6) is planar with a maximum deviation of 0.007 (1) Å for the C1 atom, from the least-squares plane of the ring. The short C—N distances of 1.407 (2) and 1.346 (2) Å and C1—N—C7 larger bond angle of 126.9 (13)° may be attributed to the involvement of the butanamide N atom in the intermolecular N—H···O interaction and a short intramolecular contact (1.95 Å) between O1 and H0A which is less than their van der Waals radii (2.72 Å). Similar short contacts are also observed in other related structures containing the acetamide residue (Sundar et al., 2005; Guo, 2004; Robin et al., 2002). Atoms N, C7, O1 and C8 forming the acetamide residue are coplanar with a maximum deviation of -0.005 (2) Å for the C7 atom. The acetamide residue is twisted considerably from the least-squares plane of phenyl ring having a dihedral angle of 25.40 (9)°. Atoms C8, C9, O2 and C10 from the O-acetyl group are also coplanar displaying a dihedral angle of 49.21 (10)° with the mean plane of the phenyl ring (C1—C6) and 73.78 (11)° with the least-squares plane of the acetamide residue.

The N atom in the butanamide moiety forms an intermolecular hydrogen bond (N—H0A···O1) with the symmetry related carbonyl oxygen atom interlinking molecules into an one-dimensional chain along the [100] (Fig. 2 and Table 1) forming a C(4) graph-set motif (Bernstein et al.,1995). Torsional angles C7—C8—C9—O2 (15.9 (2)°) and O1—C7—C8—C9 (67.3 (2)°) about C8—C9 and C7—C8, respectively, suggest the involvement of O1 and O2 atoms in a weak C—H···O1 intermolecular hydrogen bonding interaction. Atoms C2 from the phenyl ring (C1–C6) and C8 from the butanamide group form weak, bifurcated intermolecular hydrogen bonds with nearby symmetry related O2 atoms (Table 2). In addition, a short intramolecular C—H···O contact (Table 2) and a weak intermolecular Cl···Cl contact (3.4364 (8) Å) exists which influences crystal packing.

Following a density functional theory calculation (Schmidt & Polik 2007) at the B3LYP 6–31-G(d) level (Becke, 1988, 1993; Lee et al. 1988; Hehre et al. 1986) with the GAUSSIAN03 program package (Frisch et al. 2004) the angle between the mean planes of the C8/C9/O2/C10 and N/C7/O1/C8 groups change from 73.7 (8)° to 33.0 (2)°. The angle between the least-squares plane of the benzene ring and the mean planes of the C8/C9/O2/C10 and N/C7O1/C8 groups change from 49.2 (1)° and 25.4 (1)° to 30.1 (5)° and 3.6 (5)°, respectively. This results in twisting the C8O2 keto group to be in the proximity of the butanamide N atom forming a pseudo intramolecular N—H···O hydrogen bond interaction (D–H = 1.02 (0) Å; H···A = 1.92 (0) Å; D···A = 2.76 (1) Å; D–H···A = 137.6 (9)°). These results support the collective effects of the intra and intermolecular hydrogen bonding described above influencing crystal packing.

Related literature top

For the synthesis and biological activity of the title compound, see: Lliopoulos et al. (1986); Grissar et al. (1982). For related structures, see: Whitaker (1986, 1987, 1988); Whitaker & Walker (1987); Brown & Yadav (1984); Tai et al. (2005); Sundar et al. (2005); Guo (2004); Robin et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For density functional theory (DFT), see: Becke (1988, 1993); Hehre et al. (1986); Lee et al. (1988); Schmidt & Polik (2007). For the GAUSSIAN03 program package, see: Frisch et al. (2004).

Experimental top

The title compound was prepared by a method similar to that of Lliopoulos et al. (1986). A solution of 3,4-dichloroaniline (10 mmol) in benzene (30 ml) was added to a solution of ethyl acetoacetate (10 mmol) and the reaction mixture was refluxed for 2 h with stirring. The resulting precipitate was collected by filtration, washed several times with benzene and dried in vacuo (yield 86%). An ethanol solution of the title compound was allowed to evaporate slowly and colorless crystals of (I) were obtained after a week.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C–H = 0.95–0.99 Å, N–H = 0.88Å and with Uiso(H) = 1.19–1.50Ueq(C) and 1.18Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97)(Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of C10H9NO2Cl2, (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed down the b axis. Dashed lines indicate N—H···O and C—H···O intermolecular hydrogen bonds.
N-(3,4-Dichlorophenyl)-3-oxobutanamide top
Crystal data top
C10H9Cl2NO2F(000) = 1008
Mr = 246.08Dx = 1.478 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4228 reflections
a = 9.7171 (4) Åθ = 4.9–32.4°
b = 8.2834 (5) ŵ = 0.57 mm1
c = 27.4857 (16) ÅT = 200 K
V = 2212.3 (2) Å3Plate, colorless
Z = 80.56 × 0.35 × 0.14 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
3745 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.9°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1112
Tmin = 0.725, Tmax = 0.924l = 3939
16980 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.0634P]
where P = (Fo2 + 2Fc2)/3
3745 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C10H9Cl2NO2V = 2212.3 (2) Å3
Mr = 246.08Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.7171 (4) ŵ = 0.57 mm1
b = 8.2834 (5) ÅT = 200 K
c = 27.4857 (16) Å0.56 × 0.35 × 0.14 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
3745 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1910 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.924Rint = 0.045
16980 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
3745 reflectionsΔρmin = 0.27 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44746 (6)0.24662 (8)0.45002 (2)0.0723 (2)
Cl20.72279 (6)0.05651 (7)0.47381 (2)0.0685 (2)
O10.79285 (11)0.25949 (19)0.23755 (5)0.0569 (4)
O20.64604 (16)0.07935 (16)0.15306 (6)0.0661 (4)
N0.58187 (12)0.24207 (16)0.27204 (5)0.0362 (3)
H0A0.49320.25050.26610.043*
C10.61935 (15)0.19559 (18)0.31946 (6)0.0335 (4)
C20.52923 (16)0.2333 (2)0.35679 (7)0.0390 (4)
H2A0.44530.28720.34960.047*
C30.56032 (17)0.1931 (2)0.40451 (7)0.0429 (4)
C40.68175 (19)0.1122 (2)0.41514 (7)0.0431 (4)
C50.77092 (18)0.0733 (2)0.37786 (7)0.0444 (4)
H5A0.85430.01850.38510.053*
C60.74098 (17)0.1129 (2)0.33015 (7)0.0401 (4)
H6A0.80270.08400.30480.048*
C70.66728 (16)0.2750 (2)0.23478 (7)0.0382 (4)
C80.60112 (17)0.3356 (2)0.18869 (7)0.0420 (4)
H8A0.64410.43950.17950.050*
H8B0.50230.35600.19490.050*
C90.61455 (17)0.2188 (2)0.14672 (7)0.0434 (4)
C100.5849 (2)0.2844 (3)0.09710 (8)0.0644 (6)
H10A0.58980.19690.07320.097*
H10B0.65290.36750.08900.097*
H10C0.49250.33190.09670.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0658 (4)0.0910 (5)0.0601 (3)0.0116 (3)0.0270 (3)0.0049 (3)
Cl20.0810 (4)0.0739 (4)0.0507 (3)0.0003 (3)0.0064 (3)0.0127 (3)
O10.0190 (6)0.0920 (11)0.0598 (8)0.0011 (6)0.0034 (5)0.0184 (8)
O20.0785 (10)0.0437 (8)0.0759 (11)0.0137 (7)0.0205 (8)0.0024 (7)
N0.0162 (5)0.0413 (8)0.0510 (8)0.0006 (6)0.0005 (6)0.0015 (7)
C10.0230 (7)0.0275 (8)0.0500 (10)0.0048 (6)0.0003 (7)0.0027 (7)
C20.0258 (8)0.0354 (9)0.0557 (11)0.0007 (7)0.0047 (7)0.0004 (8)
C30.0395 (10)0.0379 (9)0.0514 (11)0.0054 (8)0.0113 (8)0.0002 (8)
C40.0477 (10)0.0373 (9)0.0443 (11)0.0068 (8)0.0028 (8)0.0046 (8)
C50.0388 (9)0.0372 (10)0.0572 (12)0.0056 (8)0.0034 (9)0.0019 (9)
C60.0314 (8)0.0382 (10)0.0508 (10)0.0051 (7)0.0012 (8)0.0022 (8)
C70.0232 (7)0.0385 (9)0.0530 (10)0.0001 (7)0.0013 (7)0.0031 (8)
C80.0285 (8)0.0382 (10)0.0593 (12)0.0045 (8)0.0020 (8)0.0094 (8)
C90.0276 (8)0.0425 (11)0.0601 (12)0.0027 (8)0.0050 (8)0.0089 (9)
C100.0637 (13)0.0739 (15)0.0558 (13)0.0119 (11)0.0047 (11)0.0150 (11)
Geometric parameters (Å, º) top
Cl1—C31.7215 (18)C4—C51.380 (3)
Cl2—C41.7241 (19)C5—C61.383 (3)
O1—C71.2292 (18)C5—H5A0.95
O2—C91.207 (2)C6—H6A0.95
N—C71.346 (2)C7—C81.507 (2)
N—C11.407 (2)C8—C91.511 (3)
N—H0A0.88C8—H8A0.99
C1—C21.385 (2)C8—H8B0.99
C1—C61.397 (2)C9—C101.496 (3)
C2—C31.387 (3)C10—H10A0.98
C2—H2A0.95C10—H10B0.98
C3—C41.388 (3)C10—H10C0.98
C7—N—C1126.91 (13)C1—C6—H6A120.2
C7—N—H0A116.5O1—C7—N122.94 (16)
C1—N—H0A116.5O1—C7—C8120.69 (16)
C2—C1—C6119.32 (16)N—C7—C8116.37 (13)
C2—C1—N117.45 (14)C7—C8—C9113.05 (15)
C6—C1—N123.22 (15)C7—C8—H8A109.0
C1—C2—C3120.60 (15)C9—C8—H8A109.0
C1—C2—H2A119.7C7—C8—H8B109.0
C3—C2—H2A119.7C9—C8—H8B109.0
C2—C3—C4120.01 (16)H8A—C8—H8B107.8
C2—C3—Cl1119.13 (13)O2—C9—C10121.89 (19)
C4—C3—Cl1120.86 (15)O2—C9—C8121.61 (18)
C5—C4—C3119.36 (17)C10—C9—C8116.50 (17)
C5—C4—Cl2119.13 (14)C9—C10—H10A109.5
C3—C4—Cl2121.51 (15)C9—C10—H10B109.5
C4—C5—C6121.12 (16)H10A—C10—H10B109.5
C4—C5—H5A119.4C9—C10—H10C109.5
C6—C5—H5A119.4H10A—C10—H10C109.5
C5—C6—C1119.57 (16)H10B—C10—H10C109.5
C5—C6—H6A120.2
C7—N—C1—C2152.83 (15)Cl2—C4—C5—C6178.76 (14)
C7—N—C1—C627.9 (2)C4—C5—C6—C10.9 (3)
C6—C1—C2—C31.5 (2)C2—C1—C6—C51.5 (2)
N—C1—C2—C3179.14 (15)N—C1—C6—C5179.22 (15)
C1—C2—C3—C41.0 (3)C1—N—C7—O13.9 (3)
C1—C2—C3—Cl1178.40 (13)C1—N—C7—C8175.10 (15)
C2—C3—C4—C50.3 (3)O1—C7—C8—C967.3 (2)
Cl1—C3—C4—C5179.00 (14)N—C7—C8—C9113.63 (17)
C2—C3—C4—Cl2178.72 (14)C7—C8—C9—O215.9 (2)
Cl1—C3—C4—Cl21.9 (2)C7—C8—C9—C10164.88 (15)
C3—C4—C5—C60.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O1i0.881.952.824 (2)172
C6—H6A···O10.952.352.865 (2)113
C2—H2A···O2ii0.952.583.345 (2)138
C8—H8A···O2iii0.992.453.327 (2)147
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H9Cl2NO2
Mr246.08
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)9.7171 (4), 8.2834 (5), 27.4857 (16)
V3)2212.3 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.56 × 0.35 × 0.14
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.725, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
16980, 3745, 1910
Rint0.045
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 1.04
No. of reflections3745
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97)(Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O1i0.881.952.824 (2)172
C6—H6A···O10.952.352.865 (2)113
C2—H2A···O2ii0.952.583.345 (2)138
C8—H8A···O2iii0.992.453.327 (2)147
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationBecke, A. D. (1988). Phys. Rev. A38, 3098–100.  CrossRef Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Eng. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrown, C. J. & Yadav, H. R. (1984). Acta Cryst. C40, 564–566.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGrissar, J. M., Schnettler, R. A. & Dage, R. C. (1982). US Patent 4329470.  Google Scholar
First citationGuo, M.-L. (2004). Acta Cryst. E60, o736–o737.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHehre, W. J., Random, L., Schleyer, P. & Pople, J. A. (1986). Ab Initio Molecular Orbital Theory. New York: Wiley.  Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B37, 785–789.  CrossRef Web of Science Google Scholar
First citationLliopoulos, P., Fallon, G. D. & Murray, S. (1986). J. Chem. Soc. Dalton Trans. pp. 437–443.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRobin, M., Galy, J.-P., Kenz, A. & Pierrot, M. (2002). Acta Cryst. E58, o644–o645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro.WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundar, T. V., Parthasarathi, V., Walfort, B., Lang, H., Piplani, P. & Malik, R. (2005). Acta Cryst. E61, o2868–o2870.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTai, X.-S., Liu, W.-Y., Liu, Y.-Z. & Li, Y.-Z. (2005). Acta Cryst. E61, o389–o390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWhitaker, A. (1986). Acta Cryst. C42, 1566–1569.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWhitaker, A. (1987). Acta Cryst. C43, 2141–2144.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWhitaker, A. (1988). Acta Cryst. C44, 1587–1590.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWhitaker, A. & Walker, N. P. C. (1987). Acta Cryst. C43, 2137–2141.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o58-o59
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds