organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benz­yl­oxy-4-chloro­benzene

aDepartment of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: aywgx@yahoo.com.cn

(Received 23 November 2009; accepted 26 November 2009; online 4 December 2009)

In the title compound, C13H11ClO, the two benzene rings are close to coplanar, making a dihedral angle of 3.4 (1)° The crystal structure is stabilized by weak C—H⋯π inter­actions involving both benzene rings.

Related literature

For the chemistry and crystal structures of halogenated aromatic ether derivatives, see: Liu et al. (2006[Liu, G.-H., Xue, Y.-N., Yao, M., Yu, H. & Fang, H.-B. (2006). Acta Cryst. E62, o2848-o2849.]); Shen et al. (2003[Shen, C. K. F., Duong, H. M., Sonmez, G. & Wudl, F. (2003). J. Am. Chem. Soc. 125, 16206-16207.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11ClO

  • Mr = 218.67

  • Orthorhombic, P n a 21

  • a = 11.485 (2) Å

  • b = 13.033 (3) Å

  • c = 7.3333 (15) Å

  • V = 1097.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 K

  • 0.4 × 0.35 × 0.2 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.881, Tmax = 0.940

  • 10943 measured reflections

  • 2523 independent reflections

  • 2189 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.115

  • S = 1.16

  • 2523 reflections

  • 137 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1161 Friedel pairs

  • Flack parameter: −0.08 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cg2i 0.93 2.81 3.570 (3) 140
C10—H10⋯Cg1i 0.93 2.88 3.624 (3) 138
Symmetry code: (i) [-x+1, -y+1, z-{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Halogenated aromatic ether derivatives have found wide range of applications in industry and coordination chemistry as ligands. They are also used in medicine as drugs, such as antibiotics. Recently, a series of halogenated aromatic ether compounds have been reported (Liu et al., 2006; Shen et al., 2003). As an extension of these work on the structural characterization, we report here the crystal structure of the title compound, 1-(benzyloxy)-4-chlorobenzene.

The crystal data show that in the title compound (Fig.1), the two benzene rings are essentially coplanar and twisted from each other by a dihedral angle of 3.4 (1)°. All bond lengths are within the normal range. The crystal structure is stabilized by weak C—H···π interactions.

Related literature top

For the chemistry and crystal structures of halogenated aromatic ether derivatives, see: Liu et al. (2006); Shen et al. (2003). Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

Experimental top

The commercial 1-(benzyloxy)-4-chlorobenzene (3 mmol, 648 mg) was dissolved in chloroform (20 ml). The solvent was slowly evaporated in air affording colourless block-shaped crystals of the title compound suitable for X-ray analysis.

Refinement top

All H atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic) or 0.97 Å (methylene) and Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
1-Benzyloxy-4-chlorobenzene top
Crystal data top
C13H11ClOF(000) = 456
Mr = 218.67Dx = 1.323 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2189 reflections
a = 11.485 (2) Åθ = 3.1–27.5°
b = 13.033 (3) ŵ = 0.32 mm1
c = 7.3333 (15) ÅT = 298 K
V = 1097.7 (4) Å3Bock, colourless
Z = 40.4 × 0.35 × 0.2 mm
Data collection top
Rigaku Mercury2
diffractometer
2523 independent reflections
Radiation source: fine-focus sealed tube2189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1616
Tmin = 0.881, Tmax = 0.940l = 99
10943 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.0118P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max = 0.001
S = 1.16Δρmax = 0.31 e Å3
2523 reflectionsΔρmin = 0.48 e Å3
137 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.073 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1161 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.08 (9)
Crystal data top
C13H11ClOV = 1097.7 (4) Å3
Mr = 218.67Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.485 (2) ŵ = 0.32 mm1
b = 13.033 (3) ÅT = 298 K
c = 7.3333 (15) Å0.4 × 0.35 × 0.2 mm
Data collection top
Rigaku Mercury2
diffractometer
2523 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2189 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.940Rint = 0.039
10943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.115Δρmax = 0.31 e Å3
S = 1.16Δρmin = 0.48 e Å3
2523 reflectionsAbsolute structure: Flack (1983), 1161 Friedel pairs
137 parametersAbsolute structure parameter: 0.08 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.76032 (5)0.10633 (4)0.35041 (15)0.0662 (2)
C110.72273 (17)0.23611 (14)0.3557 (3)0.0450 (4)
C60.53613 (16)0.69777 (14)0.3347 (3)0.0400 (4)
C50.62546 (18)0.74952 (15)0.4233 (3)0.0472 (5)
H50.68960.71340.46630.057*
C120.79431 (18)0.30526 (17)0.4443 (3)0.0477 (5)
H120.86360.28330.49690.057*
O10.63588 (13)0.54166 (11)0.3941 (3)0.0610 (5)
C80.65937 (17)0.43950 (15)0.3727 (3)0.0443 (4)
C40.6193 (2)0.85449 (18)0.4478 (4)0.0555 (6)
H40.67910.88850.50850.067*
C100.62149 (18)0.26770 (16)0.2733 (3)0.0483 (5)
H100.57470.22060.21250.058*
C130.76238 (17)0.40660 (17)0.4542 (3)0.0468 (5)
H130.80960.45330.51530.056*
C90.58956 (18)0.37006 (16)0.2814 (3)0.0471 (5)
H90.52130.39200.22540.056*
C70.53952 (18)0.58411 (16)0.3009 (3)0.0480 (5)
H7A0.46810.55270.34410.058*
H7B0.54640.57080.17120.058*
C20.4370 (2)0.85864 (19)0.2956 (4)0.0603 (6)
H20.37360.89530.25140.072*
C10.44145 (19)0.75356 (17)0.2727 (3)0.0502 (5)
H10.38030.71990.21510.060*
C30.5254 (2)0.90919 (16)0.3831 (4)0.0587 (6)
H30.52210.97990.39870.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0683 (4)0.0468 (3)0.0835 (4)0.0071 (2)0.0070 (4)0.0037 (4)
C110.0476 (10)0.0429 (9)0.0443 (10)0.0007 (8)0.0080 (10)0.0011 (12)
C60.0392 (9)0.0465 (10)0.0344 (9)0.0003 (7)0.0012 (8)0.0031 (8)
C50.0399 (10)0.0505 (12)0.0514 (13)0.0016 (8)0.0072 (8)0.0054 (10)
C120.0396 (10)0.0555 (13)0.0479 (11)0.0008 (9)0.0008 (10)0.0078 (10)
O10.0647 (9)0.0431 (7)0.0752 (11)0.0053 (6)0.0318 (8)0.0081 (8)
C80.0474 (10)0.0428 (9)0.0426 (10)0.0012 (8)0.0041 (9)0.0006 (10)
C40.0502 (12)0.0533 (12)0.0631 (14)0.0104 (10)0.0051 (11)0.0005 (11)
C100.0460 (11)0.0518 (11)0.0471 (10)0.0068 (9)0.0001 (10)0.0095 (10)
C130.0452 (11)0.0484 (12)0.0469 (12)0.0071 (8)0.0093 (10)0.0001 (9)
C90.0399 (10)0.0547 (11)0.0466 (11)0.0026 (8)0.0082 (9)0.0061 (10)
C70.0440 (10)0.0511 (11)0.0488 (13)0.0004 (8)0.0100 (9)0.0008 (9)
C20.0518 (12)0.0606 (13)0.0686 (16)0.0148 (11)0.0061 (11)0.0069 (12)
C10.0395 (10)0.0578 (13)0.0535 (11)0.0006 (8)0.0077 (10)0.0018 (10)
C30.0615 (14)0.0442 (10)0.0705 (17)0.0003 (9)0.0027 (13)0.0021 (12)
Geometric parameters (Å, º) top
Cl1—C111.7460 (19)C4—C31.377 (3)
C11—C101.374 (3)C4—H40.93
C11—C121.382 (3)C10—C91.385 (3)
C6—C11.385 (3)C10—H100.93
C6—C51.389 (3)C13—H130.93
C6—C71.502 (3)C9—H90.93
C5—C41.382 (3)C7—H7A0.97
C5—H50.93C7—H7B0.97
C12—C131.373 (3)C2—C31.370 (3)
C12—H120.93C2—C11.381 (3)
O1—C81.367 (2)C2—H20.93
O1—C71.413 (2)C1—H10.93
C8—C91.382 (3)C3—H30.93
C8—C131.393 (3)
C10—C11—C12120.99 (19)C12—C13—C8120.0 (2)
C10—C11—Cl1119.34 (16)C12—C13—H13120.0
C12—C11—Cl1119.67 (17)C8—C13—H13120.0
C1—C6—C5118.59 (18)C8—C9—C10119.85 (19)
C1—C6—C7118.95 (17)C8—C9—H9120.1
C5—C6—C7122.45 (17)C10—C9—H9120.1
C4—C5—C6120.25 (19)O1—C7—C6109.07 (15)
C4—C5—H5119.9O1—C7—H7A109.9
C6—C5—H5119.9C6—C7—H7A109.9
C13—C12—C11119.55 (19)O1—C7—H7B109.9
C13—C12—H12120.2C6—C7—H7B109.9
C11—C12—H12120.2H7A—C7—H7B108.3
C8—O1—C7118.71 (15)C3—C2—C1120.4 (2)
O1—C8—C9125.35 (17)C3—C2—H2119.8
O1—C8—C13114.72 (17)C1—C2—H2119.8
C9—C8—C13119.93 (19)C2—C1—C6120.7 (2)
C3—C4—C5120.5 (2)C2—C1—H1119.7
C3—C4—H4119.7C6—C1—H1119.7
C5—C4—H4119.7C2—C3—C4119.5 (2)
C11—C10—C9119.62 (19)C2—C3—H3120.2
C11—C10—H10120.2C4—C3—H3120.2
C9—C10—H10120.2
C1—C6—C5—C40.2 (3)O1—C8—C9—C10178.3 (2)
C7—C6—C5—C4178.7 (2)C13—C8—C9—C100.9 (3)
C10—C11—C12—C131.6 (3)C11—C10—C9—C80.3 (3)
Cl1—C11—C12—C13177.57 (17)C8—O1—C7—C6176.12 (18)
C7—O1—C8—C97.0 (3)C1—C6—C7—O1173.0 (2)
C7—O1—C8—C13173.7 (2)C5—C6—C7—O18.0 (3)
C6—C5—C4—C30.7 (4)C3—C2—C1—C61.2 (4)
C12—C11—C10—C91.0 (3)C5—C6—C1—C21.2 (3)
Cl1—C11—C10—C9178.22 (17)C7—C6—C1—C2177.8 (2)
C11—C12—C13—C81.0 (3)C1—C2—C3—C40.2 (4)
O1—C8—C13—C12179.0 (2)C5—C4—C3—C20.7 (4)
C9—C8—C13—C120.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg2i0.932.813.570 (3)140
C10—H10···Cg1i0.932.883.624 (3)138
Symmetry code: (i) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC13H11ClO
Mr218.67
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)11.485 (2), 13.033 (3), 7.3333 (15)
V3)1097.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.4 × 0.35 × 0.2
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.881, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
10943, 2523, 2189
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.115, 1.16
No. of reflections2523
No. of parameters137
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.48
Absolute structureFlack (1983), 1161 Friedel pairs
Absolute structure parameter0.08 (9)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg2i0.932.813.570 (3)140
C10—H10···Cg1i0.932.883.624 (3)138
Symmetry code: (i) x+1, y+1, z1/2.
 

Acknowledgements

This work was supported by a start-up grant from Anyang Institute of Technology.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, G.-H., Xue, Y.-N., Yao, M., Yu, H. & Fang, H.-B. (2006). Acta Cryst. E62, o2848–o2849.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, C. K. F., Duong, H. M., Sonmez, G. & Wudl, F. (2003). J. Am. Chem. Soc. 125, 16206–16207.  PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds