metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(cyclo­hexyl­imino­meth­yl)-5-meth­oxy­phenolato]copper(II)

aDepartment of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721007, People's Republic of China
*Correspondence e-mail: jianying_miao@163.com

(Received 30 November 2009; accepted 30 November 2009; online 4 December 2009)

In the title centrosymmetric mononuclear complex, [Cu(C14H18NO2)2], the CuII ion, lying on an inversion centre, is four-coordinated by two imine N and two phenolate O atoms from two Schiff base ligands, forming a slightly distorted square-planar geometry.

Related literature

For general background to copper complexes, see: Collinson & Fenton (1996[Collinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev. 148, 19-40.]); Hossain et al. (1996[Hossain, M. E., Alam, M. N., Begum, J., Ali, M. A., Nazimuddin, M., Smith, F. E. & Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207-213.]); Tarafder et al. (2002[Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547-2554.]); Musie et al. (2003[Musie, G. T., Li, X. & Powell, D. R. (2003). Inorg. Chim. Acta, 348, 69-74.]); García-Raso et al. (2003[García-Raso, Á., Fiol, J. J., López-Zafra, A., Castro, J. A., Cabrero, A., Mata, I. & Molins, E. (2003). Polyhedron, 22, 403-409.]); Reddy et al. (2000[Reddy, P. A. N., Datta, R. & Chakravarty, A. R. (2000). Inorg. Chem. Commun. 3, 322-324.]); Ray et al. (2003[Ray, M. S., Bhattacharya, R. B., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617-624.]); Arnold et al. (2003[Arnold, P. J., Davies, S. C., Durrant, M. C., Griffiths, D. V., Hughes, D. L. & Sharpe, P. C. (2003). Inorg. Chim. Acta, 348, 143-149.]); Raptopoulou et al. (1998[Raptopoulou, C. P., Papadopoulos, A. N., Malamatari, D. A., Ioannidis, E., Moisidis, G., Terzis, A. & Kessissoglou, D. P. (1998). Inorg. Chim. Acta, 272, 283-290.]). For related structures, see: Miao (2005[Miao, J.-Y. (2005). Acta Cryst. E61, m1981-m1983.], 2006[Miao, J.-Y. (2006). Acta Cryst. E62, m3112-m3114.]); Wang (2007[Wang, C.-Y. (2007). Acta Cryst. E63, m489-m491.]); Zhang (2004[Zhang, P. (2004). Acta Cryst. E60, m1808-m1810.]); Akitsu & Einaga (2004[Akitsu, T. & Einaga, Y. (2004). Acta Cryst. E60, m436-m438.]); Bluhm et al. (2003[Bluhm, M. E., Ciesielski, M., Görls, H., Walter, O. & Döring, M. (2003). Inorg. Chem. 42, 8878-8885.]); Castillo et al. (2003[Castillo, I., Fernández-González, J. M. & Gárate-Morales, J. L. (2003). J. Mol. Struct. 657, 25-35.]); Lacroix et al. (2004[Lacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825-3835.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H18NO2)2]

  • Mr = 528.13

  • Monoclinic, P 21 /c

  • a = 6.4557 (10) Å

  • b = 11.5170 (17) Å

  • c = 17.074 (3) Å

  • β = 99.138 (2)°

  • V = 1253.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.818, Tmax = 0.839

  • 6860 measured reflections

  • 2727 independent reflections

  • 2232 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.04

  • 2727 reflections

  • 161 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years there has been a burgeoning effort to identify the biological activities of copper, primarily through techniques associated with the interface of biology/biochemistry/coordination chemistry (Collinson & Fenton, 1996; Hossain et al., 1996; Tarafder et al., 2002). It appears that the biological role of copper is primarily in redox reactions and as a biological catalyst, although much remains to be understood (Musie et al., 2003; García-Raso et al., 2003). An extensive effort has been made to prepare and characterize a variety of copper(II) coordination complexes in an attempt to model the physical and chemical behaviour of copper-containing enzymes (Reddy et al., 2000). The peculiarity of copper lies in its ability to form complexes with coordination number four, five or six (Ray et al., 2003; Arnold et al., 2003; Raptopoulou et al., 1998). As an extension of the work on the structural characterization of such complexes (Miao, 2005, 2006), the crystal structure of the title new mononuclear copper(II) compound, is reported here.

The compound is a centrosymmetric mononuclear copper(II) complex, as shown in Fig. 1. The CuII ion, lying on an inversion centre, is four-coordinated by two imine N and two phenolate O atoms from two Schiff base ligands, forming a square-planar geometry. The Cu—O and Cu—N bond lengths are comparable with those reported in similar structures (Wang, 2007; Zhang, 2004; Akitsu & Einaga, 2004; Bluhm et al., 2003; Castillo et al., 2003; Lacroix et al., 2004). Both cyclohexane rings adopt chair conformations.

Related literature top

For general background to copper complexes, see: Collinson & Fenton (1996); Hossain et al. (1996); Tarafder et al. (2002); Musie et al. (2003); García-Raso et al. (2003); Reddy et al. (2000); Ray et al. (2003); Arnold et al. (2003); Raptopoulou et al. (1998). For related structures, see: Miao (2005, 2006); Wang (2007); Zhang (2004); Akitsu & Einaga (2004); Bluhm et al. (2003); Castillo et al. (2003); Lacroix et al. (2004).

Experimental top

4-Methoxysalicylaldehyde (1 mmol, 152 mg), cyclohexylamine (1 mmol, 99 mg) and Cu(CH3COO)2.H2O (0.5 mmol, 100 mg) were dissolved in methanol (50 ml). The mixture was stirred at room temperature for 1 h to give a blue solution. The resulting solution was kept in air for 5 d, and block blue crystals were formed.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% displacement ellipsoids (arbitrary spheres for the H atoms). Unlabelled atoms are at the symmetry position (-x, -y, -z).
Bis[2-(cyclohexyliminomethyl)-5-methoxyphenolato]copper(II) top
Crystal data top
[Cu(C14H18NO2)2]F(000) = 558
Mr = 528.13Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2706 reflections
a = 6.4557 (10) Åθ = 2.4–28.7°
b = 11.5170 (17) ŵ = 0.91 mm1
c = 17.074 (3) ÅT = 298 K
β = 99.138 (2)°Block, blue
V = 1253.4 (3) Å30.23 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2727 independent reflections
Radiation source: fine-focus sealed tube2232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 68
Tmin = 0.818, Tmax = 0.839k = 1414
6860 measured reflectionsl = 1721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.3443P]
where P = (Fo2 + 2Fc2)/3
2727 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Cu(C14H18NO2)2]V = 1253.4 (3) Å3
Mr = 528.13Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.4557 (10) ŵ = 0.91 mm1
b = 11.5170 (17) ÅT = 298 K
c = 17.074 (3) Å0.23 × 0.20 × 0.20 mm
β = 99.138 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2727 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2232 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.839Rint = 0.021
6860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
2727 reflectionsΔρmin = 0.25 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.02741 (11)
N10.2825 (2)0.05099 (13)0.05759 (8)0.0279 (3)
O10.02292 (18)0.11030 (12)0.08083 (8)0.0369 (3)
O20.2183 (2)0.44832 (13)0.22866 (8)0.0435 (3)
C10.3444 (3)0.13149 (15)0.12935 (10)0.0293 (4)
C20.1333 (3)0.17066 (15)0.11880 (10)0.0290 (4)
C30.0893 (3)0.27716 (16)0.15350 (11)0.0324 (4)
H30.04880.30250.14920.039*
C40.2490 (3)0.34426 (15)0.19372 (10)0.0321 (4)
C50.4579 (3)0.30770 (17)0.20160 (12)0.0377 (4)
H50.56540.35430.22710.045*
C60.5013 (3)0.20248 (16)0.17120 (11)0.0350 (4)
H60.63960.17690.17840.042*
C70.4013 (3)0.01873 (15)0.10362 (11)0.0314 (4)
H70.53730.00640.12200.038*
C80.3570 (3)0.17037 (15)0.04404 (11)0.0292 (4)
H80.34090.18180.01350.035*
C90.5849 (3)0.19822 (16)0.07803 (12)0.0344 (4)
H9A0.67750.14590.05550.041*
H9B0.60750.18710.13510.041*
C100.6355 (3)0.32350 (17)0.05889 (14)0.0425 (5)
H10A0.77920.34090.08200.051*
H10B0.62290.33270.00190.051*
C110.4882 (3)0.40877 (17)0.09089 (14)0.0448 (5)
H11A0.52080.48730.07630.054*
H11B0.50820.40410.14830.054*
C120.2621 (3)0.38098 (17)0.05739 (14)0.0455 (5)
H12A0.16990.43330.08010.055*
H12B0.23920.39270.00040.055*
C130.2090 (3)0.25579 (16)0.07562 (13)0.0389 (4)
H13A0.21940.24610.13250.047*
H13B0.06560.23910.05170.047*
C140.0085 (4)0.48443 (19)0.23134 (17)0.0591 (7)
H14A0.06760.48920.17840.089*
H14B0.01000.55920.25620.089*
H14C0.05830.42920.26120.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02394 (16)0.02709 (17)0.02975 (17)0.00081 (12)0.00020 (11)0.00354 (12)
N10.0262 (7)0.0262 (7)0.0306 (8)0.0021 (6)0.0025 (6)0.0001 (6)
O10.0262 (6)0.0415 (7)0.0409 (7)0.0005 (5)0.0011 (5)0.0141 (6)
O20.0426 (8)0.0368 (8)0.0501 (8)0.0028 (6)0.0043 (6)0.0145 (7)
C10.0277 (9)0.0301 (9)0.0289 (9)0.0006 (7)0.0011 (7)0.0003 (7)
C20.0281 (9)0.0321 (9)0.0260 (8)0.0018 (7)0.0018 (7)0.0001 (7)
C30.0274 (9)0.0356 (10)0.0335 (9)0.0023 (7)0.0024 (7)0.0039 (8)
C40.0396 (10)0.0278 (9)0.0287 (9)0.0018 (8)0.0045 (8)0.0017 (7)
C50.0327 (10)0.0374 (11)0.0412 (11)0.0090 (8)0.0001 (8)0.0053 (9)
C60.0269 (9)0.0371 (10)0.0393 (10)0.0012 (8)0.0005 (7)0.0015 (8)
C70.0251 (9)0.0355 (10)0.0325 (9)0.0015 (7)0.0014 (7)0.0025 (7)
C80.0275 (9)0.0278 (9)0.0322 (9)0.0027 (7)0.0040 (7)0.0009 (7)
C90.0280 (9)0.0311 (10)0.0439 (11)0.0013 (7)0.0047 (8)0.0026 (8)
C100.0333 (10)0.0361 (11)0.0592 (13)0.0076 (8)0.0107 (9)0.0050 (9)
C110.0474 (12)0.0291 (10)0.0588 (13)0.0049 (9)0.0115 (10)0.0069 (9)
C120.0433 (11)0.0317 (10)0.0634 (14)0.0039 (9)0.0143 (10)0.0029 (10)
C130.0297 (9)0.0347 (10)0.0537 (12)0.0009 (8)0.0111 (8)0.0024 (9)
C140.0502 (13)0.0549 (15)0.0724 (17)0.0048 (11)0.0106 (12)0.0306 (12)
Geometric parameters (Å, º) top
Cu1—O1i1.8987 (12)C8—C91.527 (2)
Cu1—O11.8987 (12)C8—C131.528 (2)
Cu1—N1i2.0169 (14)C8—H80.98
Cu1—N12.0169 (14)C9—C101.526 (3)
N1—C71.288 (2)C9—H9A0.97
N1—C81.487 (2)C9—H9B0.97
O1—C21.309 (2)C10—C111.527 (3)
O2—C41.367 (2)C10—H10A0.97
O2—C141.424 (3)C10—H10B0.97
C1—C61.406 (2)C11—C121.515 (3)
C1—C21.420 (2)C11—H11A0.97
C1—C71.437 (2)C11—H11B0.97
C2—C31.411 (2)C12—C131.525 (3)
C3—C41.381 (2)C12—H12A0.97
C3—H30.93C12—H12B0.97
C4—C51.399 (3)C13—H13A0.97
C5—C61.365 (3)C13—H13B0.97
C5—H50.93C14—H14A0.96
C6—H60.93C14—H14B0.96
C7—H70.93C14—H14C0.96
O1i—Cu1—O1180.00 (10)C13—C8—H8107.1
O1i—Cu1—N1i90.53 (5)C10—C9—C8110.06 (15)
O1—Cu1—N1i89.47 (5)C10—C9—H9A109.6
O1i—Cu1—N189.47 (5)C8—C9—H9A109.6
O1—Cu1—N190.53 (5)C10—C9—H9B109.6
N1i—Cu1—N1180.00 (11)C8—C9—H9B109.6
C7—N1—C8119.69 (15)H9A—C9—H9B108.2
C7—N1—Cu1121.37 (12)C9—C10—C11111.40 (16)
C8—N1—Cu1118.90 (11)C9—C10—H10A109.3
C2—O1—Cu1124.93 (11)C11—C10—H10A109.3
C4—O2—C14118.32 (15)C9—C10—H10B109.3
C6—C1—C2118.65 (16)C11—C10—H10B109.3
C6—C1—C7118.84 (16)H10A—C10—H10B108.0
C2—C1—C7122.36 (16)C12—C11—C10110.27 (17)
O1—C2—C3118.64 (15)C12—C11—H11A109.6
O1—C2—C1122.87 (16)C10—C11—H11A109.6
C3—C2—C1118.44 (16)C12—C11—H11B109.6
C4—C3—C2120.76 (16)C10—C11—H11B109.6
C4—C3—H3119.6H11A—C11—H11B108.1
C2—C3—H3119.6C11—C12—C13110.90 (17)
O2—C4—C3124.00 (17)C11—C12—H12A109.5
O2—C4—C5115.23 (16)C13—C12—H12A109.5
C3—C4—C5120.77 (17)C11—C12—H12B109.5
C6—C5—C4118.93 (17)C13—C12—H12B109.5
C6—C5—H5120.5H12A—C12—H12B108.0
C4—C5—H5120.5C12—C13—C8111.31 (15)
C5—C6—C1122.33 (17)C12—C13—H13A109.4
C5—C6—H6118.8C8—C13—H13A109.4
C1—C6—H6118.8C12—C13—H13B109.4
N1—C7—C1126.40 (17)C8—C13—H13B109.4
N1—C7—H7116.8H13A—C13—H13B108.0
C1—C7—H7116.8O2—C14—H14A109.5
N1—C8—C9116.81 (14)O2—C14—H14B109.5
N1—C8—C13107.74 (13)H14A—C14—H14B109.5
C9—C8—C13110.43 (15)O2—C14—H14C109.5
N1—C8—H8107.1H14A—C14—H14C109.5
C9—C8—H8107.1H14B—C14—H14C109.5
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C14H18NO2)2]
Mr528.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.4557 (10), 11.5170 (17), 17.074 (3)
β (°) 99.138 (2)
V3)1253.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.818, 0.839
No. of measured, independent and
observed [I > 2σ(I)] reflections
6860, 2727, 2232
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.04
No. of reflections2727
No. of parameters161
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.25

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author acknowledges Baoji University of Arts and Sciences for funding this study (grant No. ZK0831).

References

First citationAkitsu, T. & Einaga, Y. (2004). Acta Cryst. E60, m436–m438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArnold, P. J., Davies, S. C., Durrant, M. C., Griffiths, D. V., Hughes, D. L. & Sharpe, P. C. (2003). Inorg. Chim. Acta, 348, 143–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationBluhm, M. E., Ciesielski, M., Görls, H., Walter, O. & Döring, M. (2003). Inorg. Chem. 42, 8878–8885.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastillo, I., Fernández-González, J. M. & Gárate-Morales, J. L. (2003). J. Mol. Struct. 657, 25–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationCollinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev. 148, 19–40.  CrossRef CAS Web of Science Google Scholar
First citationGarcía-Raso, Á., Fiol, J. J., López-Zafra, A., Castro, J. A., Cabrero, A., Mata, I. & Molins, E. (2003). Polyhedron, 22, 403–409.  Web of Science CSD CrossRef Google Scholar
First citationHossain, M. E., Alam, M. N., Begum, J., Ali, M. A., Nazimuddin, M., Smith, F. E. & Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207–213.  CSD CrossRef CAS Web of Science Google Scholar
First citationLacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825–3835.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiao, J.-Y. (2005). Acta Cryst. E61, m1981–m1983.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiao, J.-Y. (2006). Acta Cryst. E62, m3112–m3114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMusie, G. T., Li, X. & Powell, D. R. (2003). Inorg. Chim. Acta, 348, 69–74.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaptopoulou, C. P., Papadopoulos, A. N., Malamatari, D. A., Ioannidis, E., Moisidis, G., Terzis, A. & Kessissoglou, D. P. (1998). Inorg. Chim. Acta, 272, 283–290.  Web of Science CSD CrossRef CAS Google Scholar
First citationRay, M. S., Bhattacharya, R. B., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617–624.  Web of Science CSD CrossRef CAS Google Scholar
First citationReddy, P. A. N., Datta, R. & Chakravarty, A. R. (2000). Inorg. Chem. Commun. 3, 322–324.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C.-Y. (2007). Acta Cryst. E63, m489–m491.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, P. (2004). Acta Cryst. E60, m1808–m1810.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds