metal-organic compounds
Bis[2-(cyclohexyliminomethyl)-5-methoxyphenolato]copper(II)
aDepartment of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721007, People's Republic of China
*Correspondence e-mail: jianying_miao@163.com
In the title centrosymmetric mononuclear complex, [Cu(C14H18NO2)2], the CuII ion, lying on an inversion centre, is four-coordinated by two imine N and two phenolate O atoms from two Schiff base ligands, forming a slightly distorted square-planar geometry.
Related literature
For general background to copper complexes, see: Collinson & Fenton (1996); Hossain et al. (1996); Tarafder et al. (2002); Musie et al. (2003); García-Raso et al. (2003); Reddy et al. (2000); Ray et al. (2003); Arnold et al. (2003); Raptopoulou et al. (1998). For related structures, see: Miao (2005, 2006); Wang (2007); Zhang (2004); Akitsu & Einaga (2004); Bluhm et al. (2003); Castillo et al. (2003); Lacroix et al. (2004).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809051629/ci2979sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809051629/ci2979Isup2.hkl
4-Methoxysalicylaldehyde (1 mmol, 152 mg), cyclohexylamine (1 mmol, 99 mg) and Cu(CH3COO)2.H2O (0.5 mmol, 100 mg) were dissolved in methanol (50 ml). The mixture was stirred at room temperature for 1 h to give a blue solution. The resulting solution was kept in air for 5 d, and block blue crystals were formed.
H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 30% displacement ellipsoids (arbitrary spheres for the H atoms). Unlabelled atoms are at the symmetry position (-x, -y, -z). |
[Cu(C14H18NO2)2] | F(000) = 558 |
Mr = 528.13 | Dx = 1.399 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2706 reflections |
a = 6.4557 (10) Å | θ = 2.4–28.7° |
b = 11.5170 (17) Å | µ = 0.91 mm−1 |
c = 17.074 (3) Å | T = 298 K |
β = 99.138 (2)° | Block, blue |
V = 1253.4 (3) Å3 | 0.23 × 0.20 × 0.20 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 2727 independent reflections |
Radiation source: fine-focus sealed tube | 2232 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 27.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −6→8 |
Tmin = 0.818, Tmax = 0.839 | k = −14→14 |
6860 measured reflections | l = −17→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0393P)2 + 0.3443P] where P = (Fo2 + 2Fc2)/3 |
2727 reflections | (Δ/σ)max = 0.001 |
161 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
[Cu(C14H18NO2)2] | V = 1253.4 (3) Å3 |
Mr = 528.13 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.4557 (10) Å | µ = 0.91 mm−1 |
b = 11.5170 (17) Å | T = 298 K |
c = 17.074 (3) Å | 0.23 × 0.20 × 0.20 mm |
β = 99.138 (2)° |
Bruker SMART CCD area-detector diffractometer | 2727 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2232 reflections with I > 2σ(I) |
Tmin = 0.818, Tmax = 0.839 | Rint = 0.021 |
6860 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.28 e Å−3 |
2727 reflections | Δρmin = −0.25 e Å−3 |
161 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.0000 | 0.0000 | 0.02741 (11) | |
N1 | 0.2825 (2) | −0.05099 (13) | 0.05759 (8) | 0.0279 (3) | |
O1 | −0.02292 (18) | 0.11030 (12) | 0.08083 (8) | 0.0369 (3) | |
O2 | 0.2183 (2) | 0.44832 (13) | 0.22866 (8) | 0.0435 (3) | |
C1 | 0.3444 (3) | 0.13149 (15) | 0.12935 (10) | 0.0293 (4) | |
C2 | 0.1333 (3) | 0.17066 (15) | 0.11880 (10) | 0.0290 (4) | |
C3 | 0.0893 (3) | 0.27716 (16) | 0.15350 (11) | 0.0324 (4) | |
H3 | −0.0488 | 0.3025 | 0.1492 | 0.039* | |
C4 | 0.2490 (3) | 0.34426 (15) | 0.19372 (10) | 0.0321 (4) | |
C5 | 0.4579 (3) | 0.30770 (17) | 0.20160 (12) | 0.0377 (4) | |
H5 | 0.5654 | 0.3543 | 0.2271 | 0.045* | |
C6 | 0.5013 (3) | 0.20248 (16) | 0.17120 (11) | 0.0350 (4) | |
H6 | 0.6396 | 0.1769 | 0.1784 | 0.042* | |
C7 | 0.4013 (3) | 0.01873 (15) | 0.10362 (11) | 0.0314 (4) | |
H7 | 0.5373 | −0.0064 | 0.1220 | 0.038* | |
C8 | 0.3570 (3) | −0.17037 (15) | 0.04404 (11) | 0.0292 (4) | |
H8 | 0.3409 | −0.1818 | −0.0135 | 0.035* | |
C9 | 0.5849 (3) | −0.19822 (16) | 0.07803 (12) | 0.0344 (4) | |
H9A | 0.6775 | −0.1459 | 0.0555 | 0.041* | |
H9B | 0.6075 | −0.1871 | 0.1351 | 0.041* | |
C10 | 0.6355 (3) | −0.32350 (17) | 0.05889 (14) | 0.0425 (5) | |
H10A | 0.7792 | −0.3409 | 0.0820 | 0.051* | |
H10B | 0.6229 | −0.3327 | 0.0019 | 0.051* | |
C11 | 0.4882 (3) | −0.40877 (17) | 0.09089 (14) | 0.0448 (5) | |
H11A | 0.5208 | −0.4873 | 0.0763 | 0.054* | |
H11B | 0.5082 | −0.4041 | 0.1483 | 0.054* | |
C12 | 0.2621 (3) | −0.38098 (17) | 0.05739 (14) | 0.0455 (5) | |
H12A | 0.1699 | −0.4333 | 0.0801 | 0.055* | |
H12B | 0.2392 | −0.3927 | 0.0004 | 0.055* | |
C13 | 0.2090 (3) | −0.25579 (16) | 0.07562 (13) | 0.0389 (4) | |
H13A | 0.2194 | −0.2461 | 0.1325 | 0.047* | |
H13B | 0.0656 | −0.2391 | 0.0517 | 0.047* | |
C14 | 0.0085 (4) | 0.48443 (19) | 0.23134 (17) | 0.0591 (7) | |
H14A | −0.0676 | 0.4892 | 0.1784 | 0.089* | |
H14B | 0.0100 | 0.5592 | 0.2562 | 0.089* | |
H14C | −0.0583 | 0.4292 | 0.2612 | 0.089* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02394 (16) | 0.02709 (17) | 0.02975 (17) | 0.00081 (12) | −0.00020 (11) | −0.00354 (12) |
N1 | 0.0262 (7) | 0.0262 (7) | 0.0306 (8) | 0.0021 (6) | 0.0025 (6) | 0.0001 (6) |
O1 | 0.0262 (6) | 0.0415 (7) | 0.0409 (7) | 0.0005 (5) | −0.0011 (5) | −0.0141 (6) |
O2 | 0.0426 (8) | 0.0368 (8) | 0.0501 (8) | −0.0028 (6) | 0.0043 (6) | −0.0145 (7) |
C1 | 0.0277 (9) | 0.0301 (9) | 0.0289 (9) | −0.0006 (7) | 0.0011 (7) | −0.0003 (7) |
C2 | 0.0281 (9) | 0.0321 (9) | 0.0260 (8) | −0.0018 (7) | 0.0018 (7) | 0.0001 (7) |
C3 | 0.0274 (9) | 0.0356 (10) | 0.0335 (9) | 0.0023 (7) | 0.0024 (7) | −0.0039 (8) |
C4 | 0.0396 (10) | 0.0278 (9) | 0.0287 (9) | −0.0018 (8) | 0.0045 (8) | −0.0017 (7) |
C5 | 0.0327 (10) | 0.0374 (11) | 0.0412 (11) | −0.0090 (8) | −0.0001 (8) | −0.0053 (9) |
C6 | 0.0269 (9) | 0.0371 (10) | 0.0393 (10) | −0.0012 (8) | 0.0005 (7) | −0.0015 (8) |
C7 | 0.0251 (9) | 0.0355 (10) | 0.0325 (9) | 0.0015 (7) | 0.0014 (7) | 0.0025 (7) |
C8 | 0.0275 (9) | 0.0278 (9) | 0.0322 (9) | 0.0027 (7) | 0.0040 (7) | 0.0009 (7) |
C9 | 0.0280 (9) | 0.0311 (10) | 0.0439 (11) | 0.0013 (7) | 0.0047 (8) | 0.0026 (8) |
C10 | 0.0333 (10) | 0.0361 (11) | 0.0592 (13) | 0.0076 (8) | 0.0107 (9) | 0.0050 (9) |
C11 | 0.0474 (12) | 0.0291 (10) | 0.0588 (13) | 0.0049 (9) | 0.0115 (10) | 0.0069 (9) |
C12 | 0.0433 (11) | 0.0317 (10) | 0.0634 (14) | −0.0039 (9) | 0.0143 (10) | 0.0029 (10) |
C13 | 0.0297 (9) | 0.0347 (10) | 0.0537 (12) | −0.0009 (8) | 0.0111 (8) | 0.0024 (9) |
C14 | 0.0502 (13) | 0.0549 (15) | 0.0724 (17) | 0.0048 (11) | 0.0106 (12) | −0.0306 (12) |
Cu1—O1i | 1.8987 (12) | C8—C9 | 1.527 (2) |
Cu1—O1 | 1.8987 (12) | C8—C13 | 1.528 (2) |
Cu1—N1i | 2.0169 (14) | C8—H8 | 0.98 |
Cu1—N1 | 2.0169 (14) | C9—C10 | 1.526 (3) |
N1—C7 | 1.288 (2) | C9—H9A | 0.97 |
N1—C8 | 1.487 (2) | C9—H9B | 0.97 |
O1—C2 | 1.309 (2) | C10—C11 | 1.527 (3) |
O2—C4 | 1.367 (2) | C10—H10A | 0.97 |
O2—C14 | 1.424 (3) | C10—H10B | 0.97 |
C1—C6 | 1.406 (2) | C11—C12 | 1.515 (3) |
C1—C2 | 1.420 (2) | C11—H11A | 0.97 |
C1—C7 | 1.437 (2) | C11—H11B | 0.97 |
C2—C3 | 1.411 (2) | C12—C13 | 1.525 (3) |
C3—C4 | 1.381 (2) | C12—H12A | 0.97 |
C3—H3 | 0.93 | C12—H12B | 0.97 |
C4—C5 | 1.399 (3) | C13—H13A | 0.97 |
C5—C6 | 1.365 (3) | C13—H13B | 0.97 |
C5—H5 | 0.93 | C14—H14A | 0.96 |
C6—H6 | 0.93 | C14—H14B | 0.96 |
C7—H7 | 0.93 | C14—H14C | 0.96 |
O1i—Cu1—O1 | 180.00 (10) | C13—C8—H8 | 107.1 |
O1i—Cu1—N1i | 90.53 (5) | C10—C9—C8 | 110.06 (15) |
O1—Cu1—N1i | 89.47 (5) | C10—C9—H9A | 109.6 |
O1i—Cu1—N1 | 89.47 (5) | C8—C9—H9A | 109.6 |
O1—Cu1—N1 | 90.53 (5) | C10—C9—H9B | 109.6 |
N1i—Cu1—N1 | 180.00 (11) | C8—C9—H9B | 109.6 |
C7—N1—C8 | 119.69 (15) | H9A—C9—H9B | 108.2 |
C7—N1—Cu1 | 121.37 (12) | C9—C10—C11 | 111.40 (16) |
C8—N1—Cu1 | 118.90 (11) | C9—C10—H10A | 109.3 |
C2—O1—Cu1 | 124.93 (11) | C11—C10—H10A | 109.3 |
C4—O2—C14 | 118.32 (15) | C9—C10—H10B | 109.3 |
C6—C1—C2 | 118.65 (16) | C11—C10—H10B | 109.3 |
C6—C1—C7 | 118.84 (16) | H10A—C10—H10B | 108.0 |
C2—C1—C7 | 122.36 (16) | C12—C11—C10 | 110.27 (17) |
O1—C2—C3 | 118.64 (15) | C12—C11—H11A | 109.6 |
O1—C2—C1 | 122.87 (16) | C10—C11—H11A | 109.6 |
C3—C2—C1 | 118.44 (16) | C12—C11—H11B | 109.6 |
C4—C3—C2 | 120.76 (16) | C10—C11—H11B | 109.6 |
C4—C3—H3 | 119.6 | H11A—C11—H11B | 108.1 |
C2—C3—H3 | 119.6 | C11—C12—C13 | 110.90 (17) |
O2—C4—C3 | 124.00 (17) | C11—C12—H12A | 109.5 |
O2—C4—C5 | 115.23 (16) | C13—C12—H12A | 109.5 |
C3—C4—C5 | 120.77 (17) | C11—C12—H12B | 109.5 |
C6—C5—C4 | 118.93 (17) | C13—C12—H12B | 109.5 |
C6—C5—H5 | 120.5 | H12A—C12—H12B | 108.0 |
C4—C5—H5 | 120.5 | C12—C13—C8 | 111.31 (15) |
C5—C6—C1 | 122.33 (17) | C12—C13—H13A | 109.4 |
C5—C6—H6 | 118.8 | C8—C13—H13A | 109.4 |
C1—C6—H6 | 118.8 | C12—C13—H13B | 109.4 |
N1—C7—C1 | 126.40 (17) | C8—C13—H13B | 109.4 |
N1—C7—H7 | 116.8 | H13A—C13—H13B | 108.0 |
C1—C7—H7 | 116.8 | O2—C14—H14A | 109.5 |
N1—C8—C9 | 116.81 (14) | O2—C14—H14B | 109.5 |
N1—C8—C13 | 107.74 (13) | H14A—C14—H14B | 109.5 |
C9—C8—C13 | 110.43 (15) | O2—C14—H14C | 109.5 |
N1—C8—H8 | 107.1 | H14A—C14—H14C | 109.5 |
C9—C8—H8 | 107.1 | H14B—C14—H14C | 109.5 |
Symmetry code: (i) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C14H18NO2)2] |
Mr | 528.13 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 6.4557 (10), 11.5170 (17), 17.074 (3) |
β (°) | 99.138 (2) |
V (Å3) | 1253.4 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.91 |
Crystal size (mm) | 0.23 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.818, 0.839 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6860, 2727, 2232 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.080, 1.04 |
No. of reflections | 2727 |
No. of parameters | 161 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.25 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The author acknowledges Baoji University of Arts and Sciences for funding this study (grant No. ZK0831).
References
Akitsu, T. & Einaga, Y. (2004). Acta Cryst. E60, m436–m438. Web of Science CSD CrossRef IUCr Journals Google Scholar
Arnold, P. J., Davies, S. C., Durrant, M. C., Griffiths, D. V., Hughes, D. L. & Sharpe, P. C. (2003). Inorg. Chim. Acta, 348, 143–149. Web of Science CSD CrossRef CAS Google Scholar
Bluhm, M. E., Ciesielski, M., Görls, H., Walter, O. & Döring, M. (2003). Inorg. Chem. 42, 8878–8885. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Castillo, I., Fernández-González, J. M. & Gárate-Morales, J. L. (2003). J. Mol. Struct. 657, 25–35. Web of Science CSD CrossRef CAS Google Scholar
Collinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev. 148, 19–40. CrossRef CAS Web of Science Google Scholar
García-Raso, Á., Fiol, J. J., López-Zafra, A., Castro, J. A., Cabrero, A., Mata, I. & Molins, E. (2003). Polyhedron, 22, 403–409. Web of Science CSD CrossRef Google Scholar
Hossain, M. E., Alam, M. N., Begum, J., Ali, M. A., Nazimuddin, M., Smith, F. E. & Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207–213. CSD CrossRef CAS Web of Science Google Scholar
Lacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825–3835. Web of Science CSD CrossRef CAS Google Scholar
Miao, J.-Y. (2005). Acta Cryst. E61, m1981–m1983. Web of Science CSD CrossRef IUCr Journals Google Scholar
Miao, J.-Y. (2006). Acta Cryst. E62, m3112–m3114. Web of Science CSD CrossRef IUCr Journals Google Scholar
Musie, G. T., Li, X. & Powell, D. R. (2003). Inorg. Chim. Acta, 348, 69–74. Web of Science CSD CrossRef CAS Google Scholar
Raptopoulou, C. P., Papadopoulos, A. N., Malamatari, D. A., Ioannidis, E., Moisidis, G., Terzis, A. & Kessissoglou, D. P. (1998). Inorg. Chim. Acta, 272, 283–290. Web of Science CSD CrossRef CAS Google Scholar
Ray, M. S., Bhattacharya, R. B., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617–624. Web of Science CSD CrossRef CAS Google Scholar
Reddy, P. A. N., Datta, R. & Chakravarty, A. R. (2000). Inorg. Chem. Commun. 3, 322–324. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554. Web of Science CSD CrossRef CAS Google Scholar
Wang, C.-Y. (2007). Acta Cryst. E63, m489–m491. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, P. (2004). Acta Cryst. E60, m1808–m1810. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the last few years there has been a burgeoning effort to identify the biological activities of copper, primarily through techniques associated with the interface of biology/biochemistry/coordination chemistry (Collinson & Fenton, 1996; Hossain et al., 1996; Tarafder et al., 2002). It appears that the biological role of copper is primarily in redox reactions and as a biological catalyst, although much remains to be understood (Musie et al., 2003; García-Raso et al., 2003). An extensive effort has been made to prepare and characterize a variety of copper(II) coordination complexes in an attempt to model the physical and chemical behaviour of copper-containing enzymes (Reddy et al., 2000). The peculiarity of copper lies in its ability to form complexes with coordination number four, five or six (Ray et al., 2003; Arnold et al., 2003; Raptopoulou et al., 1998). As an extension of the work on the structural characterization of such complexes (Miao, 2005, 2006), the crystal structure of the title new mononuclear copper(II) compound, is reported here.
The compound is a centrosymmetric mononuclear copper(II) complex, as shown in Fig. 1. The CuII ion, lying on an inversion centre, is four-coordinated by two imine N and two phenolate O atoms from two Schiff base ligands, forming a square-planar geometry. The Cu—O and Cu—N bond lengths are comparable with those reported in similar structures (Wang, 2007; Zhang, 2004; Akitsu & Einaga, 2004; Bluhm et al., 2003; Castillo et al., 2003; Lacroix et al., 2004). Both cyclohexane rings adopt chair conformations.