organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 6-chloro-2-methyl-4-phenyl­quinoline-3-carboxyl­ate

aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, cDepartment of Physics, The Madura College, Madurai 625 011, India, and dDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk

(Received 1 December 2009; accepted 9 December 2009; online 16 December 2009)

In the title compound, C18H14ClNO2, the quinoline ring system is planar (r.m.s. deviation = 0.032 Å) and the phenyl ring is twisted away from it by 57.5 (1)°. The crystal structure is stabilized by weak C—H⋯π inter­actions.

Related literature

For the anti-tuberculosis activity of quinoline-2-carboxylic acid derivatives, see: Jain et al. (2005[Jain, R., Singh, P. P., Jain, M., Sachdeva, S., Misra, V., Kaul, C. L., Kaur, S., Vaitilingam, B., Nayyar, A. & Bhaskar, P. P. (2005). Indian Patent Appl. IN 2002DE00628.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14ClNO2

  • Mr = 311.75

  • Monoclinic, P 21 /n

  • a = 10.828 (5) Å

  • b = 7.535 (4) Å

  • c = 18.829 (5) Å

  • β = 94.369 (5)°

  • V = 1531.8 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.18 × 0.16 × 0.13 mm

Data collection
  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.955, Tmax = 0.967

  • 3320 measured reflections

  • 2682 independent reflections

  • 2309 reflections with I > 2σ(I)

  • Rint = 0.018

  • 2 standard reflections every 2 min

  • intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.100

  • S = 1.03

  • 2682 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9BCg1i 0.96 2.80 3.744 (3) 166
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C14–C19 ring.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quinoline-2-carboxylic acid derivatives are a class of important materials useful as anti-tuberculosis agents (Jain et al., 2005). We report here the crystal structure of the title compound, a quinoline derivative.

The molecular structure of the title compound is shown in Fig.1. The quinoline ring system is planar (r.m.s. deviation is 0.032 Å). Due to phenyl substitution in the pyridine ring, the C4—C5 bond is longer [1.373 (2) Å] and the C3—C4 bond is shorter [1.434 (2) Å] than standard values for CC (1.334 Å) and Csp2—Csp2 (1.455 Å) bond lengths respectively. The phenyl ring is twisted out of the quinoline ring system by 57.5 (1)°. A weak C—H···π interaction involving the C14–C19 ring is observed.

Related literature top

For the anti-tuberculosis activity of quinoline-2-carboxylic acid derivatives, see: Jain et al. (2005).

Experimental top

A mixture of 2-amino-5-chlorobenzophenone (2.3 g, 0.01 mol) and methyacetoacetate (1.2 g, 0.01 mmol) with 0.15 ml concentrated HCl taken in a beaker was subjected to microwave irradiation for about 6 min. After completion of the reaction (TLC), the reaction mixture was washed with saturated NaHCO3 solution (10 ml), dried, washed with petroleum ether and recrystallized with chloroform (m.p. 134–135 °C).

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C–H = 0.93–0.96 Å and Uiso = 1.2Ueq(C) for CH groups, and 1.5Ueq for CH3 groups.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Methyl 6-chloro-2-methyl-4-phenylquinoline-3-carboxylate top
Crystal data top
C18H14ClNO2F(000) = 648
Mr = 311.75Dx = 1.352 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.828 (5) Åθ = 2–25°
b = 7.535 (4) ŵ = 0.26 mm1
c = 18.829 (5) ÅT = 293 K
β = 94.369 (5)°Block, colourless
V = 1531.8 (12) Å30.18 × 0.16 × 0.13 mm
Z = 4
Data collection top
Nonius MACH-3
diffractometer
2309 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω–2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 18
Tmin = 0.955, Tmax = 0.967l = 2222
3320 measured reflections2 standard reflections every 60 min
2682 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.5537P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2682 reflectionsΔρmax = 0.20 e Å3
202 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0132 (14)
Crystal data top
C18H14ClNO2V = 1531.8 (12) Å3
Mr = 311.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.828 (5) ŵ = 0.26 mm1
b = 7.535 (4) ÅT = 293 K
c = 18.829 (5) Å0.18 × 0.16 × 0.13 mm
β = 94.369 (5)°
Data collection top
Nonius MACH-3
diffractometer
2309 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.955, Tmax = 0.9672 standard reflections every 60 min
3320 measured reflections intensity decay: none
2682 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
2682 reflectionsΔρmin = 0.29 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.46859 (14)0.2554 (2)0.02447 (8)0.0362 (3)
C30.53086 (13)0.25646 (19)0.04444 (8)0.0346 (3)
C40.46120 (13)0.30371 (19)0.10339 (8)0.0339 (3)
C50.33707 (13)0.33626 (19)0.08882 (8)0.0340 (3)
C60.28365 (13)0.3408 (2)0.01735 (8)0.0358 (3)
C70.15150 (15)0.3971 (3)0.00113 (10)0.0487 (4)
H7A0.13840.42750.04840.073*
H7B0.13430.49850.02970.073*
H7C0.09730.30150.01170.073*
C80.25152 (14)0.3699 (2)0.14669 (8)0.0410 (4)
C90.0887 (2)0.2382 (3)0.20546 (13)0.0727 (6)
H9A0.12540.27930.25050.109*
H9B0.05250.12330.21140.109*
H9C0.02570.32000.18780.109*
C100.53354 (17)0.2038 (2)0.08359 (9)0.0485 (4)
H100.49280.20310.12890.058*
C110.65448 (17)0.1555 (2)0.07501 (10)0.0529 (5)
H110.69680.12240.11410.063*
C120.71432 (14)0.1561 (2)0.00690 (11)0.0472 (4)
C130.65654 (14)0.2040 (2)0.05190 (9)0.0427 (4)
H130.69940.20220.09660.051*
C140.52259 (14)0.3155 (2)0.17690 (8)0.0386 (4)
C150.62527 (15)0.4262 (2)0.19060 (9)0.0451 (4)
H150.65450.49270.15380.054*
C160.68357 (17)0.4376 (3)0.25823 (10)0.0548 (5)
H160.75220.51090.26670.066*
C170.6404 (2)0.3406 (3)0.31331 (10)0.0608 (5)
H170.68050.34690.35870.073*
C180.5376 (2)0.2341 (3)0.30062 (10)0.0608 (5)
H180.50720.17100.33800.073*
C190.47923 (17)0.2203 (2)0.23292 (9)0.0489 (4)
H190.41060.14670.22490.059*
N10.34737 (12)0.30270 (18)0.03732 (7)0.0394 (3)
O10.24231 (13)0.50480 (19)0.17883 (8)0.0677 (4)
O20.18315 (11)0.22595 (16)0.15517 (7)0.0536 (3)
Cl10.86967 (4)0.09440 (7)0.00332 (4)0.0739 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0368 (8)0.0318 (8)0.0408 (8)0.0000 (6)0.0077 (6)0.0017 (6)
C30.0317 (7)0.0288 (7)0.0439 (8)0.0001 (6)0.0060 (6)0.0023 (6)
C40.0340 (7)0.0294 (7)0.0384 (8)0.0006 (6)0.0036 (6)0.0018 (6)
C50.0322 (7)0.0302 (7)0.0398 (8)0.0004 (6)0.0048 (6)0.0011 (6)
C60.0322 (7)0.0312 (8)0.0439 (8)0.0005 (6)0.0021 (6)0.0014 (6)
C70.0339 (8)0.0538 (11)0.0572 (10)0.0064 (7)0.0029 (7)0.0010 (8)
C80.0369 (8)0.0427 (9)0.0440 (9)0.0030 (7)0.0071 (6)0.0028 (7)
C90.0644 (13)0.0759 (15)0.0835 (15)0.0002 (11)0.0421 (11)0.0110 (12)
C100.0536 (10)0.0489 (10)0.0445 (9)0.0026 (8)0.0140 (7)0.0021 (8)
C110.0532 (10)0.0462 (10)0.0629 (11)0.0032 (8)0.0287 (9)0.0036 (8)
C120.0329 (8)0.0321 (8)0.0786 (12)0.0026 (6)0.0173 (8)0.0004 (8)
C130.0332 (8)0.0362 (8)0.0588 (10)0.0016 (6)0.0042 (7)0.0026 (7)
C140.0359 (8)0.0393 (9)0.0402 (8)0.0030 (6)0.0005 (6)0.0016 (7)
C150.0432 (9)0.0459 (9)0.0456 (9)0.0035 (7)0.0002 (7)0.0039 (7)
C160.0505 (10)0.0550 (11)0.0568 (10)0.0077 (8)0.0097 (8)0.0015 (9)
C170.0713 (13)0.0643 (12)0.0440 (10)0.0029 (10)0.0143 (9)0.0021 (9)
C180.0739 (13)0.0627 (12)0.0445 (10)0.0086 (10)0.0030 (9)0.0138 (9)
C190.0511 (10)0.0488 (10)0.0461 (9)0.0072 (8)0.0004 (7)0.0076 (8)
N10.0374 (7)0.0410 (7)0.0396 (7)0.0020 (6)0.0013 (5)0.0003 (6)
O10.0707 (9)0.0562 (8)0.0804 (10)0.0041 (7)0.0339 (7)0.0240 (7)
O20.0524 (7)0.0487 (7)0.0629 (8)0.0063 (6)0.0258 (6)0.0024 (6)
Cl10.0349 (3)0.0598 (3)0.1295 (5)0.0111 (2)0.0227 (3)0.0040 (3)
Geometric parameters (Å, º) top
C2—N11.364 (2)C9—H9C0.96
C2—C101.416 (2)C10—C111.357 (3)
C2—C31.416 (2)C10—H100.93
C3—C131.414 (2)C11—C121.392 (3)
C3—C41.434 (2)C11—H110.93
C4—C51.373 (2)C12—C131.361 (2)
C4—C141.492 (2)C12—Cl11.7418 (16)
C5—C61.424 (2)C13—H130.93
C5—C81.505 (2)C14—C191.387 (2)
C6—N11.3139 (19)C14—C151.398 (2)
C6—C71.501 (2)C15—C161.380 (2)
C7—H7A0.96C15—H150.93
C7—H7B0.96C16—C171.379 (3)
C7—H7C0.96C16—H160.93
C8—O11.191 (2)C17—C181.378 (3)
C8—O21.330 (2)C17—H170.93
C9—O21.448 (2)C18—C191.383 (3)
C9—H9A0.96C18—H180.93
C9—H9B0.96C19—H190.93
N1—C2—C10117.46 (14)C11—C10—H10119.6
N1—C2—C3123.08 (13)C2—C10—H10119.6
C10—C2—C3119.45 (14)C10—C11—C12119.08 (15)
C13—C3—C2118.49 (14)C10—C11—H11120.5
C13—C3—C4123.48 (14)C12—C11—H11120.5
C2—C3—C4117.97 (13)C13—C12—C11122.66 (15)
C5—C4—C3117.02 (13)C13—C12—Cl1118.74 (15)
C5—C4—C14122.34 (13)C11—C12—Cl1118.60 (13)
C3—C4—C14120.64 (13)C12—C13—C3119.47 (16)
C4—C5—C6120.93 (13)C12—C13—H13120.3
C4—C5—C8122.19 (13)C3—C13—H13120.3
C6—C5—C8116.88 (13)C19—C14—C15118.62 (15)
N1—C6—C5122.37 (13)C19—C14—C4121.47 (14)
N1—C6—C7116.85 (14)C15—C14—C4119.91 (14)
C5—C6—C7120.75 (14)C16—C15—C14120.58 (16)
C6—C7—H7A109.5C16—C15—H15119.7
C6—C7—H7B109.5C14—C15—H15119.7
H7A—C7—H7B109.5C17—C16—C15120.24 (17)
C6—C7—H7C109.5C17—C16—H16119.9
H7A—C7—H7C109.5C15—C16—H16119.9
H7B—C7—H7C109.5C18—C17—C16119.57 (16)
O1—C8—O2124.49 (15)C18—C17—H17120.2
O1—C8—C5126.29 (15)C16—C17—H17120.2
O2—C8—C5109.17 (13)C17—C18—C19120.69 (18)
O2—C9—H9A109.5C17—C18—H18119.7
O2—C9—H9B109.5C19—C18—H18119.7
H9A—C9—H9B109.5C18—C19—C14120.28 (17)
O2—C9—H9C109.5C18—C19—H19119.9
H9A—C9—H9C109.5C14—C19—H19119.9
H9B—C9—H9C109.5C6—N1—C2118.28 (13)
C11—C10—C2120.85 (17)C8—O2—C9116.98 (15)
N1—C2—C3—C13179.65 (14)C10—C11—C12—Cl1179.82 (14)
C10—C2—C3—C130.5 (2)C11—C12—C13—C30.3 (3)
N1—C2—C3—C42.2 (2)Cl1—C12—C13—C3179.26 (12)
C10—C2—C3—C4177.96 (14)C2—C3—C13—C120.7 (2)
C13—C3—C4—C5174.20 (14)C4—C3—C13—C12177.98 (14)
C2—C3—C4—C53.1 (2)C5—C4—C14—C1954.6 (2)
C13—C3—C4—C145.6 (2)C3—C4—C14—C19125.18 (17)
C2—C3—C4—C14177.17 (14)C5—C4—C14—C15124.62 (17)
C3—C4—C5—C66.4 (2)C3—C4—C14—C1555.6 (2)
C14—C4—C5—C6173.85 (14)C19—C14—C15—C161.2 (3)
C3—C4—C5—C8174.07 (13)C4—C14—C15—C16179.56 (16)
C14—C4—C5—C85.7 (2)C14—C15—C16—C170.5 (3)
C4—C5—C6—N14.7 (2)C15—C16—C17—C180.9 (3)
C8—C5—C6—N1175.70 (14)C16—C17—C18—C191.6 (3)
C4—C5—C6—C7172.83 (15)C17—C18—C19—C140.9 (3)
C8—C5—C6—C76.7 (2)C15—C14—C19—C180.6 (3)
C4—C5—C8—O177.7 (2)C4—C14—C19—C18179.76 (17)
C6—C5—C8—O1101.9 (2)C5—C6—N1—C20.7 (2)
C4—C5—C8—O2104.54 (17)C7—C6—N1—C2178.37 (14)
C6—C5—C8—O275.90 (17)C10—C2—N1—C6176.04 (14)
N1—C2—C10—C11179.81 (16)C3—C2—N1—C64.1 (2)
C3—C2—C10—C110.0 (3)O1—C8—O2—C92.1 (3)
C2—C10—C11—C120.4 (3)C5—C8—O2—C9175.75 (15)
C10—C11—C12—C130.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cg1i0.962.803.744 (3)166
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H14ClNO2
Mr311.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.828 (5), 7.535 (4), 18.829 (5)
β (°) 94.369 (5)
V3)1531.8 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.18 × 0.16 × 0.13
Data collection
DiffractometerNonius MACH-3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.955, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
3320, 2682, 2309
Rint0.018
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.100, 1.03
No. of reflections2682
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.29

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cg1i0.962.803.744 (3)166
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

SN thanks the DST for the FIST programme and VV thanks the DST-India for funding through the Young Scientist-Fast Track Proposal.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJain, R., Singh, P. P., Jain, M., Sachdeva, S., Misra, V., Kaul, C. L., Kaur, S., Vaitilingam, B., Nayyar, A. & Bhaskar, P. P. (2005). Indian Patent Appl. IN 2002DE00628.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds