organic compounds
6,11-Dihydrodibenz[b,e]oxepin-11-one
aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C14H10O2, the seven-membered oxepine ring adopts a twist-boat conformation with a dihedral angle between the mean planes of the two fused benzene rings of 42.0 (1)°. In the crystal, molecules are linked into chains propagating along the c axis by intermolecular C—H⋯O hydrogen bonds and the chains are arranged in layers parallel to (100).
Related literature
The dibenz[b,e]oxepin nucleus constitutes the fundamental structure of many products with biological activity, see: Kumazawa et al. (1994). For dibenzo[c,e]thiepine derivatives and their chiroptical properties, see: Truce et al. (1956); Tomascovic et al. (2000). For comparative NMR and IR spectral, X-ray structural and theoretical studies of eight related 6-arylidenedibenzo[b,e]thiepin-11-one-5,5-dioxides, see: Kolehmainen et al. (2007). For related structures, see: Bandoli & Nicolini (1982); Blaton et al. (1995); Ieawsuwan et al. (2006); Linden et al. (2004); Roszak et al. (1996); Yoshinari & Konno (2009); Zhang et al. (2008,2008a). For DFT calculations, see: Hehre et al. (1986); Schmidt & Polik (2007). For the GAUSSIAN03 program package, see: Frisch et al. (2004). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809053409/ci2982sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809053409/ci2982Isup2.hkl
The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore, India. The compound was used without further purification. X-ray quality crystals (m.p. 327–329 K) were obtained by slow evaporation from a methanol solution.
All of the H atoms were placed in their calculated positions and then refined using the riding model with C-H = 0.95–0.99 Å, and with Uiso(H) = 1.18–1.21Ueq(C).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H10O2 | F(000) = 440 |
Mr = 210.22 | Dx = 1.381 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 1157 reflections |
a = 16.5065 (18) Å | θ = 6.0–73.7° |
b = 4.0806 (7) Å | µ = 0.09 mm−1 |
c = 15.0392 (17) Å | T = 110 K |
β = 93.654 (10)° | Thick needle, colorless |
V = 1010.9 (2) Å3 | 0.53 × 0.27 × 0.23 mm |
Z = 4 |
Oxford Diffraction Gemini R CCD diffractometer | 968 independent reflections |
Radiation source: fine-focus sealed tube | 953 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 26.3°, θmin = 3.8° |
ϕ and ω scans | h = −15→20 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −4→2 |
Tmin = 0.864, Tmax = 1.000 | l = −18→17 |
1472 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0835P)2 + 0.4174P] where P = (Fo2 + 2Fc2)/3 |
968 reflections | (Δ/σ)max = 0.001 |
145 parameters | Δρmax = 0.24 e Å−3 |
2 restraints | Δρmin = −0.24 e Å−3 |
C14H10O2 | V = 1010.9 (2) Å3 |
Mr = 210.22 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 16.5065 (18) Å | µ = 0.09 mm−1 |
b = 4.0806 (7) Å | T = 110 K |
c = 15.0392 (17) Å | 0.53 × 0.27 × 0.23 mm |
β = 93.654 (10)° |
Oxford Diffraction Gemini R CCD diffractometer | 968 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 953 reflections with I > 2σ(I) |
Tmin = 0.864, Tmax = 1.000 | Rint = 0.019 |
1472 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 2 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.24 e Å−3 |
968 reflections | Δρmin = −0.24 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.45613 (12) | 0.6693 (6) | 0.53696 (13) | 0.0390 (6) | |
O2 | 0.63969 (10) | 0.7966 (4) | 0.34730 (11) | 0.0255 (4) | |
C1 | 0.49884 (15) | 0.7517 (7) | 0.47743 (17) | 0.0252 (5) | |
C2 | 0.58727 (16) | 0.8141 (6) | 0.49769 (17) | 0.0239 (5) | |
C3 | 0.61004 (16) | 0.8726 (7) | 0.58847 (17) | 0.0293 (6) | |
H3A | 0.5707 | 0.8400 | 0.6311 | 0.035* | |
C4 | 0.68631 (18) | 0.9743 (8) | 0.61780 (19) | 0.0343 (7) | |
H4A | 0.6997 | 1.0074 | 0.6795 | 0.041* | |
C5 | 0.74432 (17) | 1.0287 (7) | 0.5551 (2) | 0.0333 (6) | |
H5A | 0.7970 | 1.1056 | 0.5740 | 0.040* | |
C6 | 0.72459 (16) | 0.9703 (7) | 0.46615 (19) | 0.0285 (6) | |
H6A | 0.7640 | 1.0079 | 0.4240 | 0.034* | |
C7 | 0.64779 (15) | 0.8571 (6) | 0.43686 (17) | 0.0236 (5) | |
C8 | 0.57772 (16) | 0.5685 (7) | 0.31616 (18) | 0.0275 (6) | |
H8A | 0.5774 | 0.3803 | 0.3577 | 0.033* | |
H8B | 0.5906 | 0.4841 | 0.2570 | 0.033* | |
C9 | 0.49518 (16) | 0.7233 (6) | 0.30917 (17) | 0.0236 (5) | |
C10 | 0.45306 (17) | 0.7704 (7) | 0.22715 (18) | 0.0280 (6) | |
H10A | 0.4768 | 0.7045 | 0.1741 | 0.034* | |
C11 | 0.37673 (18) | 0.9126 (8) | 0.22225 (18) | 0.0312 (6) | |
H11A | 0.3483 | 0.9431 | 0.1659 | 0.037* | |
C12 | 0.34162 (17) | 1.0107 (8) | 0.29936 (19) | 0.0311 (6) | |
H12A | 0.2898 | 1.1129 | 0.2958 | 0.037* | |
C13 | 0.38244 (15) | 0.9588 (7) | 0.38147 (18) | 0.0275 (6) | |
H13A | 0.3579 | 1.0205 | 0.4344 | 0.033* | |
C14 | 0.45922 (15) | 0.8167 (6) | 0.38669 (17) | 0.0227 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0282 (10) | 0.0601 (15) | 0.0289 (10) | −0.0057 (10) | 0.0042 (8) | 0.0139 (10) |
O2 | 0.0203 (9) | 0.0282 (9) | 0.0285 (10) | 0.0004 (8) | 0.0056 (7) | −0.0020 (8) |
C1 | 0.0239 (12) | 0.0259 (12) | 0.0261 (12) | −0.0002 (10) | 0.0039 (10) | 0.0027 (10) |
C2 | 0.0239 (12) | 0.0197 (12) | 0.0280 (13) | 0.0021 (9) | 0.0012 (9) | 0.0032 (9) |
C3 | 0.0316 (14) | 0.0302 (14) | 0.0261 (12) | 0.0035 (11) | 0.0027 (10) | 0.0044 (11) |
C4 | 0.0386 (15) | 0.0351 (16) | 0.0282 (14) | 0.0019 (12) | −0.0067 (12) | −0.0022 (12) |
C5 | 0.0247 (12) | 0.0277 (14) | 0.0463 (17) | 0.0002 (11) | −0.0073 (11) | −0.0028 (12) |
C6 | 0.0226 (11) | 0.0231 (13) | 0.0401 (14) | 0.0010 (9) | 0.0035 (10) | −0.0004 (11) |
C7 | 0.0215 (11) | 0.0182 (12) | 0.0309 (13) | 0.0038 (9) | 0.0005 (9) | 0.0028 (10) |
C8 | 0.0278 (13) | 0.0252 (14) | 0.0295 (12) | 0.0026 (10) | 0.0010 (10) | −0.0054 (10) |
C9 | 0.0240 (11) | 0.0181 (12) | 0.0288 (13) | −0.0041 (9) | 0.0018 (9) | −0.0004 (9) |
C10 | 0.0314 (13) | 0.0245 (13) | 0.0277 (12) | −0.0052 (10) | −0.0015 (10) | −0.0019 (10) |
C11 | 0.0331 (13) | 0.0310 (15) | 0.0285 (13) | −0.0042 (11) | −0.0066 (10) | 0.0034 (11) |
C12 | 0.0218 (11) | 0.0300 (14) | 0.0410 (15) | 0.0013 (9) | −0.0034 (10) | 0.0061 (11) |
C13 | 0.0237 (12) | 0.0290 (14) | 0.0300 (12) | −0.0013 (10) | 0.0042 (9) | 0.0015 (10) |
C14 | 0.0215 (10) | 0.0178 (13) | 0.0286 (13) | −0.0028 (9) | −0.0003 (9) | 0.0037 (9) |
O1—C1 | 1.221 (3) | C6—H6A | 0.95 |
O2—C7 | 1.367 (3) | C8—C9 | 1.499 (3) |
O2—C8 | 1.439 (3) | C8—H8A | 0.99 |
C1—C2 | 1.494 (3) | C8—H8B | 0.99 |
C1—C14 | 1.499 (3) | C9—C10 | 1.390 (4) |
C2—C7 | 1.408 (3) | C9—C14 | 1.395 (4) |
C2—C3 | 1.413 (4) | C10—C11 | 1.385 (4) |
C3—C4 | 1.372 (4) | C10—H10A | 0.95 |
C3—H3A | 0.95 | C11—C12 | 1.388 (4) |
C4—C5 | 1.403 (4) | C11—H11A | 0.95 |
C4—H4A | 0.95 | C12—C13 | 1.385 (4) |
C5—C6 | 1.378 (4) | C12—H12A | 0.95 |
C5—H5A | 0.95 | C13—C14 | 1.391 (4) |
C6—C7 | 1.394 (3) | C13—H13A | 0.95 |
C7—O2—C8 | 117.40 (19) | O2—C8—H8A | 109.2 |
O1—C1—C2 | 120.0 (2) | C9—C8—H8A | 109.2 |
O1—C1—C14 | 118.5 (2) | O2—C8—H8B | 109.2 |
C2—C1—C14 | 121.3 (2) | C9—C8—H8B | 109.2 |
C7—C2—C3 | 116.8 (2) | H8A—C8—H8B | 107.9 |
C7—C2—C1 | 127.8 (2) | C10—C9—C14 | 119.2 (3) |
C3—C2—C1 | 115.0 (2) | C10—C9—C8 | 121.4 (2) |
C4—C3—C2 | 123.0 (3) | C14—C9—C8 | 119.3 (2) |
C4—C3—H3A | 118.5 | C11—C10—C9 | 120.5 (3) |
C2—C3—H3A | 118.5 | C11—C10—H10A | 119.8 |
C3—C4—C5 | 118.9 (3) | C9—C10—H10A | 119.8 |
C3—C4—H4A | 120.5 | C10—C11—C12 | 120.2 (2) |
C5—C4—H4A | 120.5 | C10—C11—H11A | 119.9 |
C6—C5—C4 | 119.7 (3) | C12—C11—H11A | 119.9 |
C6—C5—H5A | 120.1 | C13—C12—C11 | 119.7 (3) |
C4—C5—H5A | 120.1 | C13—C12—H12A | 120.1 |
C5—C6—C7 | 121.2 (3) | C11—C12—H12A | 120.1 |
C5—C6—H6A | 119.4 | C12—C13—C14 | 120.2 (2) |
C7—C6—H6A | 119.4 | C12—C13—H13A | 119.9 |
O2—C7—C6 | 113.6 (2) | C14—C13—H13A | 119.9 |
O2—C7—C2 | 126.1 (2) | C9—C14—C13 | 120.1 (2) |
C6—C7—C2 | 120.3 (2) | C9—C14—C1 | 121.9 (2) |
O2—C8—C9 | 112.0 (2) | C13—C14—C1 | 117.9 (2) |
O1—C1—C2—C7 | 168.6 (3) | O2—C8—C9—C10 | 113.0 (3) |
C14—C1—C2—C7 | −16.9 (4) | O2—C8—C9—C14 | −68.2 (3) |
O1—C1—C2—C3 | −19.1 (4) | C14—C9—C10—C11 | 0.9 (4) |
C14—C1—C2—C3 | 155.4 (2) | C8—C9—C10—C11 | 179.7 (3) |
C7—C2—C3—C4 | 1.6 (4) | C9—C10—C11—C12 | 0.2 (4) |
C1—C2—C3—C4 | −171.6 (3) | C10—C11—C12—C13 | −1.5 (4) |
C2—C3—C4—C5 | 1.1 (5) | C11—C12—C13—C14 | 1.6 (4) |
C3—C4—C5—C6 | −1.9 (4) | C10—C9—C14—C13 | −0.8 (4) |
C4—C5—C6—C7 | −0.1 (4) | C8—C9—C14—C13 | −179.6 (2) |
C8—O2—C7—C6 | 156.5 (2) | C10—C9—C14—C1 | 175.7 (2) |
C8—O2—C7—C2 | −23.3 (3) | C8—C9—C14—C1 | −3.1 (4) |
C5—C6—C7—O2 | −176.9 (2) | C12—C13—C14—C9 | −0.5 (4) |
C5—C6—C7—C2 | 2.9 (4) | C12—C13—C14—C1 | −177.1 (2) |
C3—C2—C7—O2 | 176.3 (2) | O1—C1—C14—C9 | −141.2 (3) |
C1—C2—C7—O2 | −11.6 (4) | C2—C1—C14—C9 | 44.2 (4) |
C3—C2—C7—C6 | −3.5 (4) | O1—C1—C14—C13 | 35.3 (4) |
C1—C2—C7—C6 | 168.6 (3) | C2—C1—C14—C13 | −139.2 (3) |
C7—O2—C8—C9 | 79.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O1i | 0.95 | 2.57 | 3.380 (3) | 143 |
Symmetry code: (i) x, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H10O2 |
Mr | 210.22 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 110 |
a, b, c (Å) | 16.5065 (18), 4.0806 (7), 15.0392 (17) |
β (°) | 93.654 (10) |
V (Å3) | 1010.9 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.53 × 0.27 × 0.23 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.864, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1472, 968, 953 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.623 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.108, 1.06 |
No. of reflections | 968 |
No. of parameters | 145 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.24 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O1i | 0.95 | 2.57 | 3.380 (3) | 143 |
Symmetry code: (i) x, −y+1, z−1/2. |
Acknowledgements
QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bandoli, G. & Nicolini, M. (1982). J. Chem. Crystallogr. 12, 425–447. CAS Google Scholar
Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 777–780. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Hehre, W. J., Random, L., Schleyer, P. V. R. & Pople, J. A. (1986). In Ab Initio Molecular Orbital Theory. New York: Wiley. Google Scholar
Ieawsuwan, W., Bru Roig, M. & Bolte, M. (2006). Acta Cryst. E62, o1478–o1479. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kolehmainen, E., Laihia, K., Valkonen, A., Sievänen, E., Nissinen, M., Rudorf, W.-D., Loos, D., Perjessy, A., Samalikova, M., Sustekova, Z., Florea, S. & Wybraziec, J. (2007). J. Mol. Struct. 839, 94–98. Web of Science CSD CrossRef CAS Google Scholar
Kumazawa, T., Yanase, M., Harakawa, H., Obase, H., Skirakura, S., Ohishi, E., Oda, S., Kubo, K. & Yamada, K. (1994). J. Med. Chem. 37, 804–810. CrossRef CAS PubMed Web of Science Google Scholar
Linden, A., Furegati, M. & Rippert, A. J. (2004). Acta Cryst. C60, o223–o225. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlis PRO) and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Roszak, A. W., Williams, V. E. & Lemieux, R. P. (1996). Acta Cryst. C52, 3190–3193. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA: available from http://www.webmo.net. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493. Google Scholar
Truce, W. E. & Emrick, D. D. (1956). J. Am. Chem. Soc. 78, 6130–6137. CrossRef CAS Web of Science Google Scholar
Yoshinari, N. & Konno, T. (2009). Acta Cryst. E65, o774. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, H.-Q., Bao-Li,, Yang, G.-D. & Ma, Y.-G. (2008a). Acta Cryst. E64, o1304. Google Scholar
Zhang, H.-Q., Bao-Li,, Yang, G.-D. & Ma, Y.-G. (2008). Acta Cryst. E64, o1027. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound is used as an intermediate for the synthesis of doxepin, which is a psychotropic agent with tricyclic antidepressant and anxiolytic properties. Doxepin is a tricyclic compound and displays a range of pharmacological actions including maintaining adrenergic innervation. Its mechanism of action is not fully understood, but it appears to block re-uptake of monoaminergic neurotransmitters into presynaptic terminals. It also possesses anticholinergic activity and modulates antagonism of histamine H(1)- and H(2)-receptors. The dibenz[b,e]oxepin nucleus constitutes the fundamental structure of many products with biological activity (Kumazawa et al., 1994). The dibenzo[c,e]thiepine derivatives (Truce et al., 1956) exhibit remarkable chiroptical properties (Tomascovic et al., 2000). The comparative NMR and IR spectral, X-ray structural and theoretical studies of eight related 6-arylidenedibenzo[b,e]thiepin-11-one-5,5-dioxides have been reported (Kolehmainen et al., 2007). In view of the importance of oxepines, this paper reports the crystal structure of the title compound.
The seven-membered oxepin ring adopts a twist-boat conformation with the dihedral angle between the mean planes of the two fused benzene rings measuring 42.0 (1)° (Fig. 1). This conformation is assisted by sp3 hybridization of atoms C8 and O2 within the ring. The ketone oxygen atom (O1) lies in an equatorial position from the ring on opposite sides of the C8 and O2 atoms (C3—C2—C1—O1 = -19.1 (4)° and C13—C14—C1—O1 = 35.3 (4)°). Bond lengths and angles are all within expected ranges (Allen, 2002). The molecules are linked into chains propagating along the c-axis by C10–H10A···O1 intermolecular hydrogen bonds and the chains are arranged in layers parallel to the (100) (Fig. 2).
After a density functional theory (DFT) computational calculation at the 6–31-G(d) level (Hehre et al., 1986; Schmidt & Polik, 2007) with the GAUSSIAN03 program package (Frisch et al., 2004), the angle between the mean planes of the two benzene rings becomes 34.8 (2)°, a decrease of 7.2 (2)°. The C3—C2—C1—O1 and C13—C14—C1—O1 torsion angles become -8.7 (5)°) and 26.1 (5)°, a decrease of 10.3 (5)° and 9.1 (8)°, respectively. This suggests that the crystal packing is influenced by the weak C—H···O intermolecular hydrogen bonding interactions.