organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro­phen­yl)-4-methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 13 December 2009; accepted 14 December 2009; online 19 December 2009)

The mol­ecule of the title compound, C13H12ClNO2S, is bent at the S atom with a C—SO2—NH—C torsion angle of −54.8 (2)°. The dihedral angle between the two aromatic rings is 71.6 (1)°. An intra­molecular N—H⋯Cl hydrogen bond is observed. The crystal structure features inversion-related dimers formed by pairs of N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Gowda et al. (2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.]). For our studies of the effects of substituents on the structures of N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219.]); Nirmala et al. (2009[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3184.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12ClNO2S

  • Mr = 281.75

  • Monoclinic, P 21 /n

  • a = 8.661 (1) Å

  • b = 9.949 (1) Å

  • c = 15.509 (1) Å

  • β = 99.384 (8)°

  • V = 1318.5 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.00 mm−1

  • T = 299 K

  • 0.50 × 0.13 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.240, Tmax = 0.741

  • 3151 measured reflections

  • 2351 independent reflections

  • 1792 reflections with I > 2σ(I)

  • Rint = 0.029

  • 3 standard reflections every 3 min

  • intensity decay: 1.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.117

  • S = 1.03

  • 2351 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.83 (3) 2.40 (3) 3.181 (3) 156 (3)
N1—H1N⋯Cl1 0.83 (3) 2.46 (3) 2.952 (2) 119 (2)
Symmetry code: (i) -x+2, -y, -z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of substituents on crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2009; Nirmala et al., 2009), the crystal structure of N-(2-chlorophenyl)4-methylbenzenesulfonamide (I) has been determined. The conformation of the N—H bond is syn to the 2-chloro group in the aniline benzene ring. The molecule is bent at the S atom with a C1—S1—N1—C7 torsion angle of -54.8 (2)°, compared to the value of -51.6 (3)° in N-(phenyl)4-methylbenzenesulfonamide (II) (Gowda et al., 2009) and 60.0 (2)° in N-(2-methylphenyl)4-methylbenzenesulfonamide (III) (Nirmala et al., 2009).

The two benzene rings in (I) are tilted relative to each other by 71.6 (1)°, compared to 68.4 (1)° in (II) and 49.7 (1)° in (III). The other bond parameters are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

The structure exhibits both the intramolecular N—H···Cl and the intermolecular N—H···O(S) hydrogen bonds.

In the crystal structure, pairs of intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into inversion-related dimers. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2005). For our studies of the effects of substituents on the structures of N-(aryl)-arylsulfonamides, see: Gowda et al. (2009); Nirmala et al. (2009). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

A solution of toluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with 2-chloroaniline in the stoichiometric ratio and boiled for 10 min. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 4-methyl-N-(2-chlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its IR and NMR spectra. Single crystals used in X-ray diffraction studies were grown by a slow evaporation of an ethanolic solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and its positional parameters were refined [N-H = 0.83 (3) Å]. The other atoms were positioned with idealized geometry using a riding model [C-H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
N-(2-Chlorophenyl)-4-methylbenzenesulfonamide top
Crystal data top
C13H12ClNO2SF(000) = 584
Mr = 281.75Dx = 1.419 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 8.661 (1) Åθ = 6.3–21.3°
b = 9.949 (1) ŵ = 4.00 mm1
c = 15.509 (1) ÅT = 299 K
β = 99.384 (8)°Needle, colourless
V = 1318.5 (2) Å30.50 × 0.13 × 0.08 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1792 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 67.5°, θmin = 5.3°
ω/2θ scansh = 102
Absorption correction: ψ scan
(North et al., 1968)
k = 110
Tmin = 0.240, Tmax = 0.741l = 1818
3151 measured reflections3 standard reflections every 120 min
2351 independent reflections intensity decay: 1.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.203P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
2351 reflectionsΔρmax = 0.26 e Å3
168 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0074 (7)
Crystal data top
C13H12ClNO2SV = 1318.5 (2) Å3
Mr = 281.75Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.661 (1) ŵ = 4.00 mm1
b = 9.949 (1) ÅT = 299 K
c = 15.509 (1) Å0.50 × 0.13 × 0.08 mm
β = 99.384 (8)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1792 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.029
Tmin = 0.240, Tmax = 0.7413 standard reflections every 120 min
3151 measured reflections intensity decay: 1.6%
2351 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
2351 reflectionsΔρmin = 0.32 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.61691 (9)0.13179 (7)0.05985 (5)0.0700 (3)
S11.00511 (7)0.16393 (6)0.10719 (4)0.0503 (2)
O11.0698 (2)0.2235 (2)0.18850 (12)0.0636 (5)
O21.1070 (2)0.0996 (2)0.05640 (13)0.0656 (5)
N10.8841 (2)0.0448 (2)0.12574 (15)0.0521 (5)
H1N0.867 (3)0.009 (3)0.0838 (19)0.062*
C10.8918 (3)0.2840 (2)0.04327 (15)0.0471 (6)
C20.8224 (3)0.2501 (3)0.04057 (16)0.0574 (7)
H20.83760.16510.06270.069*
C30.7314 (4)0.3424 (3)0.09075 (19)0.0626 (7)
H30.68400.31890.14690.075*
C40.7084 (4)0.4705 (3)0.0596 (2)0.0669 (8)
C50.7801 (4)0.5015 (3)0.0238 (2)0.0827 (10)
H50.76660.58680.04590.099*
C60.8711 (4)0.4099 (3)0.07551 (19)0.0691 (8)
H60.91820.43310.13180.083*
C70.7485 (3)0.0701 (2)0.16324 (15)0.0460 (5)
C80.6155 (3)0.0057 (2)0.13720 (15)0.0505 (6)
C90.4813 (3)0.0161 (3)0.17153 (18)0.0641 (7)
H90.39330.03680.15380.077*
C100.4771 (4)0.1159 (3)0.23198 (19)0.0688 (8)
H100.38540.13330.25390.083*
C110.6092 (4)0.1897 (3)0.25992 (19)0.0660 (7)
H110.60730.25610.30190.079*
C120.7438 (4)0.1671 (3)0.22683 (17)0.0597 (7)
H120.83290.21730.24720.072*
C130.6086 (5)0.5708 (4)0.1163 (3)0.1005 (12)
H13A0.50150.54150.12540.121*
H13B0.64400.57770.17170.121*
H13C0.61660.65690.08810.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0684 (5)0.0636 (4)0.0769 (5)0.0086 (3)0.0080 (4)0.0160 (3)
S10.0432 (3)0.0513 (4)0.0539 (4)0.0004 (3)0.0003 (2)0.0079 (3)
O10.0575 (11)0.0704 (13)0.0567 (11)0.0045 (9)0.0093 (8)0.0096 (9)
O20.0466 (10)0.0718 (12)0.0789 (13)0.0026 (9)0.0112 (9)0.0164 (11)
N10.0515 (11)0.0439 (12)0.0604 (13)0.0025 (9)0.0078 (10)0.0039 (9)
C10.0456 (12)0.0466 (13)0.0480 (13)0.0063 (10)0.0048 (10)0.0050 (10)
C20.0664 (17)0.0524 (15)0.0499 (14)0.0071 (13)0.0012 (12)0.0088 (11)
C30.0664 (17)0.0697 (18)0.0486 (14)0.0134 (14)0.0001 (12)0.0021 (13)
C40.0685 (18)0.0590 (17)0.0723 (19)0.0021 (14)0.0087 (15)0.0189 (14)
C50.116 (3)0.0499 (17)0.076 (2)0.0135 (18)0.0039 (18)0.0046 (15)
C60.091 (2)0.0537 (16)0.0577 (16)0.0036 (15)0.0025 (15)0.0152 (13)
C70.0493 (13)0.0429 (12)0.0446 (12)0.0071 (10)0.0038 (10)0.0078 (10)
C80.0556 (14)0.0453 (13)0.0479 (13)0.0042 (11)0.0003 (11)0.0054 (11)
C90.0512 (15)0.078 (2)0.0612 (16)0.0008 (14)0.0050 (12)0.0063 (15)
C100.0616 (17)0.086 (2)0.0607 (17)0.0153 (16)0.0168 (14)0.0080 (16)
C110.078 (2)0.0641 (17)0.0570 (16)0.0117 (15)0.0133 (14)0.0037 (14)
C120.0629 (16)0.0589 (16)0.0566 (16)0.0002 (13)0.0076 (13)0.0083 (13)
C130.107 (3)0.085 (3)0.102 (3)0.011 (2)0.005 (2)0.034 (2)
Geometric parameters (Å, º) top
Cl1—C81.737 (3)C5—H50.93
S1—O11.4233 (18)C6—H60.93
S1—O21.4266 (19)C7—C81.381 (3)
S1—N11.639 (2)C7—C121.385 (3)
S1—C11.748 (3)C8—C91.373 (4)
N1—C71.415 (3)C9—C101.370 (4)
N1—H1N0.83 (3)C9—H90.93
C1—C61.371 (4)C10—C111.369 (4)
C1—C21.382 (3)C10—H100.93
C2—C31.368 (4)C11—C121.367 (4)
C2—H20.93C11—H110.93
C3—C41.388 (4)C12—H120.93
C3—H30.93C13—H13A0.96
C4—C51.376 (4)C13—H13B0.96
C4—C131.506 (4)C13—H13C0.96
C5—C61.374 (4)
O1—S1—O2119.12 (12)C5—C6—H6120.3
O1—S1—N1108.46 (12)C8—C7—C12118.0 (2)
O2—S1—N1104.08 (12)C8—C7—N1119.4 (2)
O1—S1—C1108.75 (12)C12—C7—N1122.6 (2)
O2—S1—C1109.52 (12)C9—C8—C7121.3 (2)
N1—S1—C1106.12 (11)C9—C8—Cl1118.9 (2)
C7—N1—S1122.74 (17)C7—C8—Cl1119.8 (2)
C7—N1—H1N112 (2)C10—C9—C8119.9 (3)
S1—N1—H1N111 (2)C10—C9—H9120.1
C6—C1—C2120.2 (3)C8—C9—H9120.1
C6—C1—S1120.8 (2)C11—C10—C9119.5 (3)
C2—C1—S1119.0 (2)C11—C10—H10120.3
C3—C2—C1119.5 (3)C9—C10—H10120.3
C3—C2—H2120.2C12—C11—C10120.8 (3)
C1—C2—H2120.2C12—C11—H11119.6
C2—C3—C4121.4 (3)C10—C11—H11119.6
C2—C3—H3119.3C11—C12—C7120.5 (3)
C4—C3—H3119.3C11—C12—H12119.7
C5—C4—C3117.7 (3)C7—C12—H12119.7
C5—C4—C13121.9 (3)C4—C13—H13A109.5
C3—C4—C13120.4 (3)C4—C13—H13B109.5
C6—C5—C4121.9 (3)H13A—C13—H13B109.5
C6—C5—H5119.1C4—C13—H13C109.5
C4—C5—H5119.1H13A—C13—H13C109.5
C1—C6—C5119.3 (3)H13B—C13—H13C109.5
C1—C6—H6120.3
O1—S1—N1—C761.9 (2)C2—C1—C6—C50.4 (4)
O2—S1—N1—C7170.36 (19)S1—C1—C6—C5179.4 (3)
C1—S1—N1—C754.8 (2)C4—C5—C6—C10.2 (5)
O1—S1—C1—C63.0 (3)S1—N1—C7—C8145.7 (2)
O2—S1—C1—C6134.7 (2)S1—N1—C7—C1235.5 (3)
N1—S1—C1—C6113.5 (2)C12—C7—C8—C91.5 (4)
O1—S1—C1—C2177.2 (2)N1—C7—C8—C9179.6 (2)
O2—S1—C1—C245.5 (2)C12—C7—C8—Cl1178.24 (19)
N1—S1—C1—C266.3 (2)N1—C7—C8—Cl10.6 (3)
C6—C1—C2—C30.8 (4)C7—C8—C9—C100.9 (4)
S1—C1—C2—C3179.0 (2)Cl1—C8—C9—C10179.4 (2)
C1—C2—C3—C40.7 (4)C8—C9—C10—C112.4 (4)
C2—C3—C4—C50.2 (5)C9—C10—C11—C121.5 (5)
C2—C3—C4—C13179.6 (3)C10—C11—C12—C71.0 (4)
C3—C4—C5—C60.3 (5)C8—C7—C12—C112.5 (4)
C13—C4—C5—C6180.0 (3)N1—C7—C12—C11178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.83 (3)2.40 (3)3.181 (3)156 (3)
N1—H1N···Cl10.83 (3)2.46 (3)2.952 (2)119 (2)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC13H12ClNO2S
Mr281.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)8.661 (1), 9.949 (1), 15.509 (1)
β (°) 99.384 (8)
V3)1318.5 (2)
Z4
Radiation typeCu Kα
µ (mm1)4.00
Crystal size (mm)0.50 × 0.13 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.240, 0.741
No. of measured, independent and
observed [I > 2σ(I)] reflections
3151, 2351, 1792
Rint0.029
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.117, 1.03
No. of reflections2351
No. of parameters168
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.83 (3)2.40 (3)3.181 (3)156 (3)
N1—H1N···Cl10.83 (3)2.46 (3)2.952 (2)119 (2)
Symmetry code: (i) x+2, y, z.
 

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds