organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[4-(3-Chloro­prop­­oxy)-2-hy­droxy­phen­yl]ethanone

aCollege of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China, and bCollege of Science, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China
*Correspondence e-mail: jinminggaocn@yahoo.com.cn

(Received 17 November 2009; accepted 28 November 2009; online 4 December 2009)

The title compound, C11H13ClO3, has been obtained in the reaction of 2, 4-dihydroxy­lacetonephenone, potassium carbonate and 1-bromo-3-chloro-hexane. The hydr­oxy group is involved in an intra­molecular O—H⋯O hydrogen bond. The crystal packing exhibits no significantly short inter­molecular contacts

Related literature

For background to the Williamson reaction in organic synthesis, see: Dermer (1934[Dermer, O. C. (1934). Chem. Rev. 14, 385-430.]). For a related structure, see: Schlemper (1986[Schlemper, E. O. (1986). Acta Cryst. C42, 755-757.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13ClO3

  • Mr = 228.66

  • Orthorhombic, P 21 21 2

  • a = 18.620 (2) Å

  • b = 11.963 (11) Å

  • c = 5.0240 (6) Å

  • V = 1119.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 298 K

  • 0.49 × 0.44 × 0.43 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.857, Tmax = 0.873

  • 4851 measured reflections

  • 1946 independent reflections

  • 1556 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.103

  • S = 1.03

  • 1946 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 761 Friedel pairs

  • Flack parameter: −0.16 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.85 2.570 (3) 146

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Williamson reaction is a very useful transformation in organic synthesis since the products are of value in both industrial and academic applications. It usually involves the employment of an alkali-metal salt of the hydroxy compound and an alkylhalide (Dermer, 1934).

In this paper, we present the title compound, (I), which was synthesized by the reaction of 2, 4-dihydroxylacetonephenone, potassium carbonate and 1-bromo-3-chloro-hexane. In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the related structure (Schlemper, 1986). The dihedral angle between the benzene ring C3-C8 and the plane O3C9C10 is 3.82 (4)°. The crystal packing exhibits no significantly short intermolecular contacts

Related literature top

For background to the Williamson reaction in organic synthesis, see: Dermer (1934). For a related structure, see: Schlemper (1986).

Experimental top

2, 4-Dihydroxylacetonephenone (3 mmol), potassium carbonate (6 mmol), 1-bromo-3-chloro-hexane (3 mmol), and 10 ml acetone were mixed in 50 ml flask. After 4 h stirring at 373 K, the crude product was obtained. The crystals were obtained by recrystallization from n-hexane/ethyl acetate. Elemental analysis: calculated for C11H13ClO3: C 55.96, H 5.17%; found: C 55.88, H 5.25,%.

Refinement top

All H atoms were positioned geometrically, with O—H= 0.82 Å, C—H=0.93- 0.97 Å, and refined as riding, with Uiso(H)=1.2–1.5Ueq(C, O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atomic numbering and 30% probability displacement ellipsoids.
1-[4-(3-Chloropropoxy)-2-hydroxyphenyl]ethanone top
Crystal data top
C11H13ClO3Dx = 1.357 Mg m3
Mr = 228.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 1957 reflections
a = 18.620 (2) Åθ = 2.2–25.7°
b = 11.963 (11) ŵ = 0.33 mm1
c = 5.0240 (6) ÅT = 298 K
V = 1119.1 (11) Å3Block, colourless
Z = 40.49 × 0.44 × 0.43 mm
F(000) = 480
Data collection top
Bruker Smart APEX CCD area-detector
diffractometer
1946 independent reflections
Radiation source: fine-focus sealed tube1556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1822
Tmin = 0.857, Tmax = 0.873k = 914
4851 measured reflectionsl = 55
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.0435P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1946 reflectionsΔρmax = 0.22 e Å3
138 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 761 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.16 (10)
Crystal data top
C11H13ClO3V = 1119.1 (11) Å3
Mr = 228.66Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 18.620 (2) ŵ = 0.33 mm1
b = 11.963 (11) ÅT = 298 K
c = 5.0240 (6) Å0.49 × 0.44 × 0.43 mm
Data collection top
Bruker Smart APEX CCD area-detector
diffractometer
1946 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1556 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.873Rint = 0.054
4851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.22 e Å3
S = 1.03Δρmin = 0.19 e Å3
1946 reflectionsAbsolute structure: Flack (1983), 761 Friedel pairs
138 parametersAbsolute structure parameter: 0.16 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.61841 (8)0.94594 (14)0.1602 (4)0.0460 (5)
O10.81896 (9)1.15126 (15)0.7343 (4)0.0551 (6)
O20.70120 (10)1.19429 (14)0.4881 (5)0.0556 (6)
H20.73201.20120.60360.083*
Cl10.48481 (5)0.70010 (7)0.1232 (2)0.0753 (3)
C10.89472 (15)0.9967 (2)0.6420 (7)0.0592 (8)
H1A0.92041.02540.79300.089*
H1B0.92500.99960.48750.089*
H1C0.88090.92070.67550.089*
C20.82884 (13)1.0662 (2)0.5953 (6)0.0419 (6)
C30.77663 (12)1.03407 (19)0.3905 (6)0.0356 (6)
C40.71379 (12)1.09934 (19)0.3463 (6)0.0387 (6)
C50.66330 (12)1.06801 (19)0.1590 (6)0.0412 (6)
H50.62271.11190.13210.049*
C60.67293 (12)0.97085 (19)0.0103 (6)0.0363 (6)
C70.73511 (12)0.9060 (2)0.0441 (6)0.0380 (6)
H70.74260.84240.05860.046*
C80.78500 (13)0.93830 (19)0.2325 (6)0.0385 (6)
H80.82590.89470.25550.046*
C90.62364 (13)0.8441 (2)0.3163 (6)0.0445 (7)
H9A0.62830.77970.20010.053*
H9B0.66530.84700.43200.053*
C100.55550 (14)0.8356 (2)0.4797 (6)0.0506 (7)
H10A0.55190.90120.59230.061*
H10B0.55910.77090.59530.061*
C110.48784 (15)0.8259 (2)0.3180 (7)0.0575 (8)
H11A0.44680.82740.43680.069*
H11B0.48430.88990.20020.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0445 (9)0.0458 (10)0.0476 (13)0.0035 (8)0.0070 (9)0.0095 (10)
O10.0589 (12)0.0490 (11)0.0575 (14)0.0072 (9)0.0084 (11)0.0082 (11)
O20.0588 (12)0.0425 (10)0.0654 (16)0.0090 (9)0.0098 (11)0.0183 (10)
Cl10.0772 (5)0.0724 (5)0.0764 (7)0.0267 (4)0.0077 (5)0.0137 (6)
C10.0450 (16)0.0682 (18)0.064 (2)0.0023 (12)0.0129 (17)0.005 (2)
C20.0448 (13)0.0394 (14)0.0414 (18)0.0095 (11)0.0003 (12)0.0055 (14)
C30.0362 (12)0.0317 (12)0.0389 (16)0.0042 (10)0.0019 (12)0.0060 (12)
C40.0444 (13)0.0289 (11)0.0427 (18)0.0007 (11)0.0035 (13)0.0005 (14)
C50.0403 (13)0.0369 (13)0.0463 (18)0.0063 (10)0.0026 (13)0.0026 (13)
C60.0392 (13)0.0358 (14)0.0338 (15)0.0029 (11)0.0041 (12)0.0016 (11)
C70.0449 (14)0.0301 (13)0.0389 (18)0.0003 (11)0.0053 (12)0.0023 (12)
C80.0390 (13)0.0312 (13)0.0454 (18)0.0021 (10)0.0023 (12)0.0052 (13)
C90.0467 (14)0.0460 (14)0.0408 (18)0.0031 (11)0.0053 (13)0.0104 (14)
C100.0570 (16)0.0529 (17)0.0418 (18)0.0021 (13)0.0083 (14)0.0059 (15)
C110.0468 (15)0.0565 (17)0.069 (2)0.0035 (12)0.0072 (16)0.0020 (16)
Geometric parameters (Å, º) top
O3—C61.361 (3)C5—C61.393 (3)
O3—C91.452 (3)C5—H50.9300
O1—C21.248 (3)C6—C71.404 (3)
O2—C41.361 (3)C7—C81.381 (4)
O2—H20.8200C7—H70.9300
Cl1—C111.796 (3)C8—H80.9300
C1—C21.500 (4)C9—C101.515 (4)
C1—H1A0.9600C9—H9A0.9700
C1—H1B0.9600C9—H9B0.9700
C1—H1C0.9600C10—C111.504 (4)
C2—C31.467 (4)C10—H10A0.9700
C3—C81.402 (4)C10—H10B0.9700
C3—C41.424 (3)C11—H11A0.9700
C4—C51.382 (3)C11—H11B0.9700
C6—O3—C9118.25 (18)C8—C7—H7120.5
C4—O2—H2109.5C6—C7—H7120.5
C2—C1—H1A109.5C7—C8—C3122.8 (2)
C2—C1—H1B109.5C7—C8—H8118.6
H1A—C1—H1B109.5C3—C8—H8118.6
C2—C1—H1C109.5O3—C9—C10107.02 (19)
H1A—C1—H1C109.5O3—C9—H9A110.3
H1B—C1—H1C109.5C10—C9—H9A110.3
O1—C2—C3120.6 (2)O3—C9—H9B110.3
O1—C2—C1119.0 (3)C10—C9—H9B110.3
C3—C2—C1120.4 (2)H9A—C9—H9B108.6
C8—C3—C4116.8 (2)C11—C10—C9114.5 (2)
C8—C3—C2122.5 (2)C11—C10—H10A108.6
C4—C3—C2120.7 (2)C9—C10—H10A108.6
O2—C4—C5117.7 (2)C11—C10—H10B108.6
O2—C4—C3121.2 (2)C9—C10—H10B108.6
C5—C4—C3121.1 (2)H10A—C10—H10B107.6
C4—C5—C6120.3 (2)C10—C11—Cl1112.67 (19)
C4—C5—H5119.9C10—C11—H11A109.1
C6—C5—H5119.9Cl1—C11—H11A109.1
O3—C6—C5115.1 (2)C10—C11—H11B109.1
O3—C6—C7124.8 (2)Cl1—C11—H11B109.1
C5—C6—C7120.1 (2)H11A—C11—H11B107.8
C8—C7—C6118.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.852.570 (3)146

Experimental details

Crystal data
Chemical formulaC11H13ClO3
Mr228.66
Crystal system, space groupOrthorhombic, P21212
Temperature (K)298
a, b, c (Å)18.620 (2), 11.963 (11), 5.0240 (6)
V3)1119.1 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.49 × 0.44 × 0.43
Data collection
DiffractometerBruker Smart APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.857, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
4851, 1946, 1556
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.03
No. of reflections1946
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19
Absolute structureFlack (1983), 761 Friedel pairs
Absolute structure parameter0.16 (10)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.852.570 (3)146.4
 

Acknowledgements

The authors acknowledge the support of the Foundation of Northwest A&F University.

References

First citationDermer, O. C. (1934). Chem. Rev. 14, 385–430.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchlemper, E. O. (1986). Acta Cryst. C42, 755–757.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds