organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3,4,5-Tri­meth­oxy­benzyl­­idene)-2-(8-quinol­yl­oxy)acetohydrazide methanol solvate

aCollege of Chemistry and Chemical Engineering of Bohai University, Jinzhou, Liaoning 121000, People's Republic of China
*Correspondence e-mail: zengling1976@163.com

(Received 25 November 2009; accepted 26 November 2009; online 4 December 2009)

In the title compound, C21H21N3O5·CH4O, the quinoline plane and the benzene ring form a dihedral angle of 3.6 (2)°. The methanol solvent mol­ecule is linked with the acetohydrazide mol­ecule via O—H⋯N and N—H⋯O hydrogen bonds. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds help to consolidate the crystal packing, which also exhibits ππ inter­actions, as indicated by short distances of 3.739 (4) Å between the centroids of the aromatic rings.

Related literature

For applications of 8-hydroxy­quinoline derivatives, see: Park et al. (2006[Park, K. M., Moon, S. T., Kang, Y. J., Kim, H. J., Seo, J. & Lee, S. S. (2006). Inorg. Chem. Commun. 9, 671-674.]); Karmakar et al. (2007[Karmakar, A., Sarma, R. J. & Baruah, J. B. (2007). CrystEngComm, 9, 379-389.]). For a related structure, see Wang et al. (2009[Wang, S.-Y., Yuan, L., Xu, L., Zhang, Z., Diao, Y.-P. & Lv, D.-C. (2009). Acta Cryst. E65, o1154.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N3O5·CH4O

  • Mr = 427.45

  • Orthorhombic, P n a 21

  • a = 13.385 (4) Å

  • b = 4.9005 (15) Å

  • c = 31.89 (1) Å

  • V = 2091.8 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.18 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.988

  • 10056 measured reflections

  • 1879 independent reflections

  • 1263 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.099

  • S = 1.08

  • 1879 reflections

  • 283 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯N1 0.82 2.02 2.814 (5) 164
N2—H4⋯O6 0.86 2.30 3.070 (4) 149
C3—H3⋯O5i 0.93 2.45 3.340 (6) 159
C5—H5⋯O4i 0.93 2.52 3.411 (6) 160
C19—H19A⋯O2ii 0.96 2.37 3.196 (6) 144
C21—H21A⋯O3iii 0.96 2.57 3.265 (5) 130
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Synthesis of 8-hydroxyquinoline and its derivatives have attracted a great interest due to their biological activities and applications in coordination chemistry (Park et al., 2006; Karmakar et al., 2007). In our search for new extractants of metal ions and biologically active materials, the title compound, (I), has been synthesized. We report here its crystal structure.

All bond lengths and angles are normal and comparable to those observed in the related compound (E)-N'-(2,5-dimethoxybenzylidene)-2-(8- quinolyloxy)acetohydrazide methanol solvate (Wang et al., 2009). The molecule is nearly planar, with a dihedral angle of the benzene ring and the quinoline ring of 3.6 (2)°. The methanol solvent molecule forms an O—H···N hydrogen bond to the quinoline ring system and accepts an N—H···O hydrogen bond from the hydrazide NH group. In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) help to consolidate the crystal packing.

Related literature top

For applications of 8-hydroxyquinoline derivatives, see: Park et al. (2006); Karmakar et al. (2007). For a related structure, see Wang et al. (2009).

Experimental top

3,4,5-Trimethoxybenzaldehyde (0.1 mmol, 19.6 mg) and 2-(quinolin-8-yloxy) acetohydrazide (21.8 mg, 0.1 mmol), were dissolved in methanol (20 ml). The mixture was stirred at room temperature to give a clear colorless solution. Crystals of the title compound were formed by gradual evaporation of the solvent over a period of six days at room temperature.

Refinement top

All H atoms were initially located in a difference Fourier map, then placed in idealized positions (C—H 0.93–0.97 Å, O—H 0.82–0.85 Å, N—H 0.86 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C, N) and 1.5Ueq(O). In the absence of atoms heavier than Si, the absolute structure can not be reliably determined, so 1784 Friedel pairs were averaged before the final refinement.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.
(E)-N'-(3,4,5-Trimethoxybenzylidene)-2-(8- quinolyloxy)acetohydrazide methanol solvate top
Crystal data top
C21H21N3O5·CH4OF(000) = 904
Mr = 427.45Dx = 1.357 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 786 reflections
a = 13.385 (4) Åθ = 2.6–17.8°
b = 4.9005 (15) ŵ = 0.10 mm1
c = 31.89 (1) ÅT = 295 K
V = 2091.8 (11) Å3Block, colourless
Z = 40.18 × 0.15 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1879 independent reflections
Radiation source: fine-focus sealed tube1263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1513
Tmin = 0.982, Tmax = 0.988k = 55
10056 measured reflectionsl = 3737
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.0119P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1879 reflectionsΔρmax = 0.15 e Å3
283 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0111 (15)
Crystal data top
C21H21N3O5·CH4OV = 2091.8 (11) Å3
Mr = 427.45Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 13.385 (4) ŵ = 0.10 mm1
b = 4.9005 (15) ÅT = 295 K
c = 31.89 (1) Å0.18 × 0.15 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1879 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1263 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.077
10056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.08Δρmax = 0.15 e Å3
1879 reflectionsΔρmin = 0.16 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6229 (2)0.7115 (6)0.13448 (8)0.0497 (8)
O20.6522 (3)1.1590 (8)0.22093 (11)0.0819 (12)
O30.1718 (2)0.3242 (6)0.34960 (8)0.0495 (8)
O40.2323 (2)0.6336 (6)0.41318 (8)0.0448 (8)
O50.3852 (2)0.9783 (6)0.40569 (9)0.0515 (9)
O60.4246 (3)0.4033 (8)0.16176 (12)0.0776 (12)
H60.46420.39980.14210.116*
N10.5266 (3)0.3563 (9)0.08495 (12)0.0543 (11)
N20.5580 (3)0.7798 (8)0.21461 (10)0.0475 (10)
H40.54270.64070.19950.057*
N30.5127 (3)0.8173 (8)0.25337 (10)0.0449 (10)
C10.4809 (4)0.1830 (12)0.06048 (17)0.0679 (16)
H10.42700.08720.07160.081*
C20.5070 (5)0.1317 (12)0.01916 (17)0.0679 (16)
H20.47200.00420.00330.082*
C30.5852 (4)0.2727 (12)0.00229 (15)0.0635 (15)
H30.60370.24370.02550.076*
C40.6372 (4)0.4592 (10)0.02669 (14)0.0481 (12)
C50.7184 (4)0.6099 (12)0.01122 (15)0.0610 (15)
H50.73860.58850.01650.073*
C60.7676 (4)0.7867 (11)0.03669 (15)0.0597 (14)
H6A0.82200.88360.02630.072*
C70.7376 (4)0.8255 (11)0.07854 (14)0.0530 (13)
H70.77240.94700.09550.064*
C80.6581 (3)0.6872 (10)0.09433 (12)0.0436 (12)
C90.6056 (3)0.4985 (10)0.06885 (13)0.0439 (12)
C100.6703 (3)0.9191 (9)0.15890 (14)0.0486 (12)
H10A0.66711.09010.14360.058*
H10B0.74020.87240.16240.058*
C110.6250 (3)0.9590 (11)0.20091 (14)0.0479 (12)
C120.4417 (3)0.6516 (10)0.26137 (14)0.0463 (12)
H120.42410.52120.24150.056*
C130.3880 (3)0.6625 (10)0.30083 (12)0.0417 (12)
C140.3068 (3)0.4905 (9)0.30537 (12)0.0421 (11)
H140.28830.37680.28330.050*
C150.2527 (3)0.4860 (9)0.34250 (12)0.0389 (11)
C160.2808 (3)0.6550 (10)0.37560 (12)0.0374 (11)
C170.3629 (3)0.8264 (9)0.37111 (12)0.0405 (11)
C180.4170 (3)0.8321 (9)0.33362 (12)0.0409 (12)
H180.47170.94770.33060.049*
C190.1410 (4)0.1460 (10)0.31644 (14)0.0520 (12)
H19A0.12060.25250.29270.078*
H19B0.08610.03590.32580.078*
H19C0.19570.03010.30860.078*
C200.1689 (4)0.8559 (10)0.42331 (16)0.0624 (15)
H20A0.20521.02380.42030.094*
H20B0.14620.83780.45170.094*
H20C0.11250.85670.40470.094*
C210.4632 (3)1.1764 (10)0.40269 (14)0.0513 (13)
H21A0.52641.08520.40020.077*
H21B0.46331.28810.42740.077*
H21C0.45241.28890.37850.077*
C220.3780 (4)0.1473 (12)0.1656 (2)0.0755 (16)
H22A0.42690.00560.16240.113*
H22B0.32800.12860.14420.113*
H22C0.34720.13290.19270.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0574 (19)0.061 (2)0.0310 (16)0.0138 (17)0.0085 (14)0.0099 (15)
O20.104 (3)0.092 (3)0.050 (2)0.048 (2)0.0258 (19)0.030 (2)
O30.052 (2)0.058 (2)0.0388 (17)0.0123 (18)0.0051 (14)0.0016 (16)
O40.0519 (19)0.052 (2)0.0299 (16)0.0046 (16)0.0083 (14)0.0080 (15)
O50.0585 (19)0.061 (2)0.0350 (17)0.0140 (19)0.0038 (15)0.0064 (16)
O60.088 (3)0.080 (3)0.064 (3)0.023 (2)0.018 (2)0.018 (2)
N10.056 (2)0.059 (3)0.048 (2)0.009 (2)0.000 (2)0.008 (2)
N20.058 (2)0.054 (3)0.031 (2)0.001 (2)0.0097 (17)0.0052 (18)
N30.051 (2)0.057 (3)0.0264 (19)0.003 (2)0.0121 (18)0.0002 (18)
C10.063 (3)0.080 (4)0.060 (3)0.016 (3)0.000 (3)0.019 (3)
C20.080 (4)0.073 (4)0.052 (3)0.001 (4)0.011 (3)0.022 (3)
C30.077 (4)0.076 (4)0.037 (3)0.017 (3)0.007 (3)0.010 (3)
C40.064 (3)0.048 (3)0.033 (3)0.014 (3)0.001 (2)0.005 (2)
C50.077 (4)0.070 (4)0.036 (3)0.013 (3)0.010 (3)0.007 (3)
C60.067 (3)0.069 (4)0.043 (3)0.004 (3)0.017 (3)0.002 (3)
C70.058 (3)0.065 (4)0.036 (3)0.004 (3)0.012 (2)0.008 (2)
C80.052 (3)0.052 (3)0.027 (2)0.001 (3)0.005 (2)0.003 (2)
C90.051 (3)0.043 (3)0.038 (3)0.007 (3)0.002 (2)0.000 (2)
C100.052 (3)0.060 (3)0.034 (2)0.013 (3)0.005 (2)0.010 (2)
C110.046 (3)0.062 (4)0.035 (3)0.010 (3)0.006 (2)0.009 (3)
C120.051 (3)0.055 (3)0.033 (2)0.005 (3)0.008 (2)0.003 (2)
C130.041 (3)0.052 (3)0.032 (2)0.002 (2)0.005 (2)0.001 (2)
C140.047 (3)0.047 (3)0.033 (2)0.001 (2)0.0023 (19)0.003 (2)
C150.037 (3)0.043 (3)0.037 (3)0.001 (2)0.0049 (19)0.010 (2)
C160.041 (3)0.042 (3)0.028 (2)0.003 (2)0.0052 (19)0.002 (2)
C170.046 (3)0.047 (3)0.029 (2)0.007 (2)0.0021 (19)0.001 (2)
C180.043 (3)0.047 (3)0.032 (2)0.001 (2)0.004 (2)0.004 (2)
C190.057 (3)0.058 (3)0.041 (3)0.015 (3)0.005 (2)0.001 (3)
C200.070 (3)0.058 (4)0.059 (3)0.002 (3)0.025 (3)0.002 (3)
C210.050 (3)0.050 (3)0.053 (3)0.007 (3)0.003 (2)0.010 (2)
C220.069 (4)0.069 (4)0.088 (4)0.001 (3)0.003 (3)0.008 (3)
Geometric parameters (Å, º) top
O1—C81.369 (5)C7—C81.358 (6)
O1—C101.429 (5)C7—H70.9300
O2—C111.225 (5)C8—C91.418 (6)
O3—C151.360 (5)C10—C111.483 (6)
O3—C191.432 (5)C10—H10A0.9700
O4—C161.367 (5)C10—H10B0.9700
O4—C201.418 (5)C12—C131.450 (6)
O5—C171.364 (5)C12—H120.9300
O5—C211.429 (5)C13—C141.382 (6)
O6—C221.407 (6)C13—C181.391 (6)
O6—H60.8200C14—C151.389 (5)
N1—C11.306 (6)C14—H140.9300
N1—C91.366 (6)C15—C161.394 (6)
N2—C111.329 (5)C16—C171.390 (6)
N2—N31.389 (5)C17—C181.398 (6)
N2—H40.8600C18—H180.9300
N3—C121.275 (5)C19—H19A0.9600
C1—C21.386 (7)C19—H19B0.9600
C1—H10.9300C19—H19C0.9600
C2—C31.365 (8)C20—H20A0.9600
C2—H20.9300C20—H20B0.9600
C3—C41.387 (7)C20—H20C0.9600
C3—H30.9300C21—H21A0.9600
C4—C51.404 (7)C21—H21B0.9600
C4—C91.422 (6)C21—H21C0.9600
C5—C61.358 (7)C22—H22A0.9600
C5—H50.9300C22—H22B0.9600
C6—C71.407 (6)C22—H22C0.9600
C6—H6A0.9300
C8—O1—C10114.8 (3)N3—C12—C13121.3 (4)
C15—O3—C19117.5 (3)N3—C12—H12119.4
C16—O4—C20115.1 (3)C13—C12—H12119.4
C17—O5—C21118.5 (3)C14—C13—C18120.3 (4)
C22—O6—H6109.5C14—C13—C12117.3 (4)
C1—N1—C9118.0 (4)C18—C13—C12122.4 (4)
C11—N2—N3120.0 (4)C13—C14—C15120.6 (4)
C11—N2—H4120.0C13—C14—H14119.7
N3—N2—H4120.0C15—C14—H14119.7
C12—N3—N2114.8 (4)O3—C15—C14124.5 (4)
N1—C1—C2124.6 (5)O3—C15—C16115.8 (4)
N1—C1—H1117.7C14—C15—C16119.7 (4)
C2—C1—H1117.7O4—C16—C17120.8 (4)
C3—C2—C1118.4 (5)O4—C16—C15119.3 (4)
C3—C2—H2120.8C17—C16—C15119.6 (3)
C1—C2—H2120.8O5—C17—C16114.8 (3)
C2—C3—C4119.8 (5)O5—C17—C18124.5 (4)
C2—C3—H3120.1C16—C17—C18120.6 (4)
C4—C3—H3120.1C13—C18—C17119.1 (4)
C3—C4—C5122.5 (5)C13—C18—H18120.5
C3—C4—C9118.1 (5)C17—C18—H18120.5
C5—C4—C9119.4 (5)O3—C19—H19A109.5
C6—C5—C4120.1 (5)O3—C19—H19B109.5
C6—C5—H5120.0H19A—C19—H19B109.5
C4—C5—H5120.0O3—C19—H19C109.5
C5—C6—C7121.0 (5)H19A—C19—H19C109.5
C5—C6—H6A119.5H19B—C19—H19C109.5
C7—C6—H6A119.5O4—C20—H20A109.5
C8—C7—C6120.6 (5)O4—C20—H20B109.5
C8—C7—H7119.7H20A—C20—H20B109.5
C6—C7—H7119.7O4—C20—H20C109.5
C7—C8—O1124.9 (4)H20A—C20—H20C109.5
C7—C8—C9120.1 (4)H20B—C20—H20C109.5
O1—C8—C9115.0 (4)O5—C21—H21A109.5
N1—C9—C8120.1 (4)O5—C21—H21B109.5
N1—C9—C4121.1 (4)H21A—C21—H21B109.5
C8—C9—C4118.9 (4)O5—C21—H21C109.5
O1—C10—C11113.9 (4)H21A—C21—H21C109.5
O1—C10—H10A108.8H21B—C21—H21C109.5
C11—C10—H10A108.8O6—C22—H22A109.5
O1—C10—H10B108.8O6—C22—H22B109.5
C11—C10—H10B108.8H22A—C22—H22B109.5
H10A—C10—H10B107.7O6—C22—H22C109.5
O2—C11—N2123.9 (4)H22A—C22—H22C109.5
O2—C11—C10117.0 (4)H22B—C22—H22C109.5
N2—C11—C10119.1 (4)
C11—N2—N3—C12172.4 (4)O1—C10—C11—O2169.6 (4)
C9—N1—C1—C20.2 (8)O1—C10—C11—N210.2 (7)
N1—C1—C2—C30.7 (9)N2—N3—C12—C13179.2 (4)
C1—C2—C3—C40.8 (8)N3—C12—C13—C14174.7 (4)
C2—C3—C4—C5179.8 (5)N3—C12—C13—C187.0 (7)
C2—C3—C4—C90.6 (7)C18—C13—C14—C150.5 (7)
C3—C4—C5—C6179.0 (5)C12—C13—C14—C15178.9 (4)
C9—C4—C5—C61.5 (7)C19—O3—C15—C140.2 (6)
C4—C5—C6—C71.0 (8)C19—O3—C15—C16179.5 (4)
C5—C6—C7—C80.3 (8)C13—C14—C15—O3179.8 (4)
C6—C7—C8—O1179.7 (4)C13—C14—C15—C160.4 (6)
C6—C7—C8—C91.0 (7)C20—O4—C16—C1776.2 (5)
C10—O1—C8—C76.0 (6)C20—O4—C16—C15109.2 (5)
C10—O1—C8—C9174.7 (4)O3—C15—C16—O45.0 (6)
C1—N1—C9—C8179.4 (5)C14—C15—C16—O4174.7 (4)
C1—N1—C9—C40.0 (7)O3—C15—C16—C17179.7 (4)
C7—C8—C9—N1179.0 (4)C14—C15—C16—C170.0 (6)
O1—C8—C9—N10.3 (6)C21—O5—C17—C16174.9 (4)
C7—C8—C9—C40.5 (6)C21—O5—C17—C186.1 (6)
O1—C8—C9—C4179.8 (4)O4—C16—C17—O54.0 (6)
C3—C4—C9—N10.2 (6)C15—C16—C17—O5178.6 (4)
C5—C4—C9—N1179.7 (5)O4—C16—C17—C18175.1 (4)
C3—C4—C9—C8179.7 (4)C15—C16—C17—C180.5 (6)
C5—C4—C9—C80.8 (6)C14—C13—C18—C170.1 (7)
C8—O1—C10—C11174.8 (4)C12—C13—C18—C17178.4 (4)
N3—N2—C11—O21.5 (7)O5—C17—C18—C13178.6 (4)
N3—N2—C11—C10178.3 (4)C16—C17—C18—C130.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N10.822.022.814 (5)164
N2—H4···O60.862.303.070 (4)149
C3—H3···O5i0.932.453.340 (6)159
C5—H5···O4i0.932.523.411 (6)160
C19—H19A···O2ii0.962.373.196 (6)144
C21—H21A···O3iii0.962.573.265 (5)130
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x1/2, y+3/2, z; (iii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC21H21N3O5·CH4O
Mr427.45
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)13.385 (4), 4.9005 (15), 31.89 (1)
V3)2091.8 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.18 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10056, 1879, 1263
Rint0.077
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.099, 1.08
No. of reflections1879
No. of parameters283
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N10.822.022.814 (5)163.7
N2—H4···O60.862.303.070 (4)148.8
C3—H3···O5i0.932.453.340 (6)159.2
C5—H5···O4i0.932.523.411 (6)159.7
C19—H19A···O2ii0.962.373.196 (6)144.3
C21—H21A···O3iii0.962.573.265 (5)129.8
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x1/2, y+3/2, z; (iii) x+1/2, y+3/2, z.
 

References

First citationKarmakar, A., Sarma, R. J. & Baruah, J. B. (2007). CrystEngComm, 9, 379–389.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, K. M., Moon, S. T., Kang, Y. J., Kim, H. J., Seo, J. & Lee, S. S. (2006). Inorg. Chem. Commun. 9, 671–674.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, S.-Y., Yuan, L., Xu, L., Zhang, Z., Diao, Y.-P. & Lv, D.-C. (2009). Acta Cryst. E65, o1154.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds