organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-5-(l-Menth­yl­oxy)-5-[(2R,3R)-2-(l-menth­yl­oxy)-5-oxo­tetra­hydro­furan-3-yl]furan-2(5H)-one

aDepartment of Chemistry, Zhengzhon University, Zhengzhou 450052, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: lyfuyuqin@126.com, jctao@zzu.edu.cn

(Received 4 December 2009; accepted 14 December 2009; online 19 December 2009)

In the title compound, C28H44O6, the two five-membered rings form a dihedral angle of 6.7 (1)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into layers parallel to (101).

Related literature

For the applications of 5-(R)-(l-menth­yloxy)-2(5H)-furan­one in asymmetic synthesis, see: Huang & Chen (1999[Huang, H. & Chen, Q.-H. (1999). Tetrahedron Asymmetry, 10, 1295-1307.]); Wang & Chen (1999[Wang, Y. H. & Chen, Q.-H. (1999). Sci. China B, 42, 121-130.]); Fu et al. (2003[Fu, Y., Fan, X., Wang, J., Kang, H. & Chen, Q. (2003). Chin. Sci. Bull. 48, 323-328.]); Yu et al. (2008[Yu, Z.-L., Hu, S.-Q., Li, S.-L. & Fu, Y.-Q. (2008). Chin. J. Org. Chem. 28, 1119-1122.]).

[Scheme 1]

Experimental

Crystal data
  • C28H44O6

  • Mr = 476.63

  • Monoclinic, P 21

  • a = 12.3443 (15) Å

  • b = 9.3455 (11) Å

  • c = 12.5044 (15) Å

  • β = 92.990 (2)°

  • V = 1440.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.37 × 0.21 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.990

  • 10978 measured reflections

  • 2847 independent reflections

  • 1948 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.10

  • 2847 reflections

  • 313 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O5i 0.93 2.37 3.289 (5) 168
C28—H28A⋯O2ii 0.96 2.59 3.405 (5) 143
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The well known chiral 5-(R)-(l-menthyloxy)-2(5H)-furanone behaves as a Michael acceptor towards carbon, oxygen, sulfur and nitrogen nucleophiles to afford chiral 4-(R)-(l-menthyloxy)-3-substituted-butyrolactone (Huang et al., 1999; Wang et al., 1999; Fu et al., 2003; Yu et al., 2008). Recently, when we have used 1,2:5,6-di-O-isopropylidene-D-glucofuranose as Michael donor to react with 5-(R)-(l-menthyloxy)-2(5H)-furanone, the adduct was not yielded, but the title compound, (I) - unexpected product of the self-addition of 5-(R)-(l-menthyloxy)-2(5H)-furanone - was obtained. Herein, we report the synthesis, characterization and crystal structure of (I) (Fig. 1).

In the crystal structure, each molecule is connected by six adjacent molecules through weak intermolecular C—H···O hydrogen bonds (Table 1) between H atoms of menthyloxy groups, or H atoms of lactone, and O atoms of the carbonyl groups, leading to the formation of a two-dimensional sheet parallel to (a+c)b plane (Fig. 2). The layers are further packed through van der Waals forces..

The absolute configuration of the title compound was established on the basis of the chiral l-menthyloxy group. In the addition reaction, the three chiral centers on the l-menthyloxy group did not change because they did not participant in the reaction. Accordingly, the stereogenic center of C7 is determined as R, the configuration of C4 and C8 are retained.

Related literature top

For the applications of 5-(R)-(l-menthyloxy)-2(5H)-furanone in asymmetic synthesis, see: Huang & Chen (1999); Wang & Chen (1999); Fu et al. (2003); Yu et al. (2008).

Experimental top

1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (2 mmol, 0.520 g) was added to the mixture of powdered K2CO3 (10 mmol, 1.382 g), tetrabutylammonium bromide (2 mmol, 0.645 g) and acetonitrile (20 ml). The mixture was stirred for 20 minutes, then the chiral synthon 5-(R)-(l-menthyloxy)-2(5H)-furanone (4 mmol, 0.953 g) was added and the mixture was stirred at room temperature for 8 days until TLC analysis indicated that the chiral synthon had been completely consumed. After the addition of acetonitrile (50 ml), the mixture was filtered and the salts were washed with acetonitrile. The organic layer was dried over MgSO4, evaporated, and purified by column chromatography to give a white solid, which was recrystalized to afford colorless crystal.

Yield 38.8%, m.p. 143–144 °C, [α]D20: -159 (c 0.1, CHCl3); IR (KBr, cm-1): 3096,3079, 2957, 2918, 2872, 1810, 1781, 1768, 1612, 1456, 1384, 1369, 905; 1HNMR (400 MHz, CDCl3) δ: 0.68 (d, J = 6.8 Hz, 3H, CH3,), 0.76 (d, J = 6.8 Hz, 3H, CH3), 0.83 (d, J = 6.4 Hz, 3H, CH3,), 0.86 (d, J = 6.4 Hz, 3H,CH3), 0.91 (d, J = 6.8 Hz, 3H, CH3), 0.93 (d, J = 6.4 Hz, 3H, CH3),1.00–1.19 (m, 6H, 6CH), 1.25–1.65 (m, 8H, 4CH2), 2.03–2.05 (m, 4H, 2CH2), 2.45 (m, 1H, CH), 2.75–2.82 (m, 2H, 2CH), 3.17–3.20 (m,1H, CH), 3.50–3.53 (m, 1H, CH), 5.65 (d, J = 1.6 Hz, 1H, OCH), 6.36 (d, J = 5.6 Hz, 1H, CH), 7.02 (d, J = 5.6 Hz, 1H, CH); 13C NMR (100 MHz, CDCl3) δ: 15.6, 15.8, 20.9, 21.2,22.1, 22.3, 22.7, 23.1, 25.3, 25.5, 29.5, 31.4, 31.5, 33.9, 34.3, 39.6, 43.4,47.7, 48.2, 49.4, 75.8, 77.4, 100.4, 110.0, 126.6, 150.9, 168.5, 174.4; HRMS (ESI) m/z: calcd. for C28H44O6 (M+Na+) 499.3036, found 499.3035.

Refinement top

All H atoms were geometrically positioned (C—H 0.93-0.98 Å) and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C). In the absence of any significant anomalous scatterers in the molecule, the 2428 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 20% probability displacement ellipsoids.
[Figure 2] Fig. 2. A portion of the crystal packing showing weak intermolecular C—H···O hydrogen-bonds as dashed lines.
(S)-5-(l-Menthyloxy)-5-[(2R,3R)-2-(l- menthyloxy)-5- oxotetrahydrofuran-3-yl]furan-2(5H)-one top
Crystal data top
C28H44O6F(000) = 520
Mr = 476.63Dx = 1.099 Mg m3
Monoclinic, P21Melting point: 416 K
Hall symbol: P 2y1Mo Kα radiation, λ = 0.71073 Å
a = 12.3443 (15) ÅCell parameters from 2076 reflections
b = 9.3455 (11) Åθ = 2.4–19.9°
c = 12.5044 (15) ŵ = 0.08 mm1
β = 92.990 (2)°T = 296 K
V = 1440.6 (3) Å3Block, colourless
Z = 20.37 × 0.21 × 0.13 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2847 independent reflections
Radiation source: fine-focus sealed tube1948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.973, Tmax = 0.990k = 1111
10978 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.0145P]
where P = (Fo2 + 2Fc2)/3
2847 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.11 e Å3
Crystal data top
C28H44O6V = 1440.6 (3) Å3
Mr = 476.63Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.3443 (15) ŵ = 0.08 mm1
b = 9.3455 (11) ÅT = 296 K
c = 12.5044 (15) Å0.37 × 0.21 × 0.13 mm
β = 92.990 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2847 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1948 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.990Rint = 0.037
10978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.107H-atom parameters constrained
S = 1.10Δρmax = 0.13 e Å3
2847 reflectionsΔρmin = 0.11 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F > 2 σ (F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2722 (3)0.1115 (4)0.7313 (3)0.0636 (9)
C20.1833 (3)0.1464 (4)0.6548 (3)0.0673 (9)
H20.15390.23710.64350.081*
C30.1512 (3)0.0294 (3)0.6040 (2)0.0580 (8)
H30.09660.02520.54990.070*
C40.2157 (2)0.0963 (3)0.6464 (2)0.0500 (7)
C50.0993 (3)0.4327 (4)0.6196 (3)0.0668 (9)
C60.0638 (3)0.2810 (4)0.6295 (3)0.0721 (10)
H6A0.05900.23490.55990.087*
H6B0.00660.27610.66030.087*
C70.1496 (2)0.2092 (3)0.7026 (2)0.0542 (8)
H70.11450.16450.76270.065*
C80.2212 (3)0.3329 (3)0.7451 (2)0.0542 (8)
H80.29800.31060.73770.065*
C90.3545 (2)0.0949 (3)0.5128 (2)0.0516 (7)
H90.33890.00790.51190.062*
C100.3496 (3)0.1518 (4)0.3983 (2)0.0639 (9)
H100.36130.25530.40400.077*
C110.4467 (3)0.0921 (5)0.3399 (3)0.0882 (12)
H11A0.43860.01070.33210.106*
H11B0.44660.13340.26870.106*
C120.5536 (3)0.1242 (5)0.3987 (3)0.0906 (13)
H12A0.61180.08340.35930.109*
H12B0.56410.22700.40160.109*
C130.5596 (3)0.0655 (4)0.5105 (3)0.0786 (11)
H130.55320.03890.50560.094*
C140.4636 (3)0.1210 (4)0.5701 (3)0.0630 (9)
H14A0.46420.07560.63990.076*
H14B0.47260.22310.58160.076*
C150.2398 (3)0.1322 (4)0.3384 (3)0.0806 (11)
H150.18420.16110.38720.097*
C160.2143 (4)0.0210 (5)0.3039 (3)0.1099 (15)
H16A0.14500.02380.26530.165*
H16B0.21250.08110.36600.165*
H16C0.26930.05470.25850.165*
C170.2291 (5)0.2304 (7)0.2419 (4)0.146 (2)
H17A0.28080.20300.19100.219*
H17B0.24250.32730.26420.219*
H17C0.15710.22290.20940.219*
C180.6660 (3)0.0997 (6)0.5710 (4)0.1129 (16)
H18A0.72510.06300.53220.169*
H18B0.66700.05630.64060.169*
H18C0.67340.20150.57850.169*
C190.2668 (3)0.4725 (3)0.9018 (2)0.0555 (8)
H190.26330.55710.85550.067*
C200.2145 (3)0.5078 (4)1.0059 (2)0.0703 (10)
H200.21770.42041.04920.084*
C210.2846 (4)0.6188 (4)1.0667 (3)0.0892 (12)
H21A0.28000.70871.02790.107*
H21B0.25550.63441.13630.107*
C220.4031 (4)0.5765 (5)1.0825 (3)0.0920 (12)
H22A0.44320.65401.11770.110*
H22B0.40920.49311.12850.110*
C230.4521 (3)0.5434 (4)0.9774 (3)0.0752 (10)
H230.44830.63010.93320.090*
C240.3841 (3)0.4271 (4)0.9195 (3)0.0690 (9)
H24A0.41400.40700.85090.083*
H24B0.38770.33990.96160.083*
C250.0957 (3)0.5478 (5)0.9905 (3)0.0878 (12)
H250.05980.46680.95380.105*
C260.0741 (4)0.6783 (6)0.9189 (4)0.1279 (18)
H26A0.10580.76160.95280.192*
H26B0.00280.69200.90770.192*
H26C0.10560.66320.85120.192*
C270.0408 (4)0.5658 (7)1.0960 (4)0.136 (2)
H27A0.05630.48421.14090.204*
H27B0.03620.57391.08220.204*
H27C0.06760.65081.13150.204*
C280.5722 (3)0.4972 (5)0.9912 (4)0.1014 (14)
H28A0.57790.41391.03610.152*
H28B0.61420.57361.02370.152*
H28C0.59900.47540.92240.152*
O10.29140 (17)0.0331 (2)0.72584 (15)0.0571 (5)
O20.3238 (3)0.1869 (3)0.7920 (2)0.0953 (9)
O30.27166 (15)0.16972 (19)0.56934 (14)0.0511 (5)
O40.18960 (19)0.4565 (2)0.68011 (17)0.0668 (6)
O50.0572 (2)0.5251 (3)0.5659 (2)0.0991 (9)
O60.20131 (17)0.3581 (2)0.85066 (15)0.0589 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.097 (3)0.046 (2)0.0488 (19)0.0005 (19)0.0076 (19)0.0070 (16)
C20.097 (3)0.0419 (19)0.064 (2)0.0128 (19)0.0108 (19)0.0021 (17)
C30.072 (2)0.0488 (19)0.0540 (17)0.0082 (17)0.0060 (15)0.0059 (16)
C40.0595 (18)0.0457 (17)0.0455 (16)0.0009 (15)0.0078 (15)0.0032 (14)
C50.071 (2)0.061 (2)0.069 (2)0.0050 (19)0.006 (2)0.0044 (19)
C60.059 (2)0.053 (2)0.105 (3)0.0005 (17)0.0085 (19)0.014 (2)
C70.062 (2)0.0470 (17)0.0554 (18)0.0062 (16)0.0189 (16)0.0048 (15)
C80.0646 (19)0.0480 (18)0.0511 (17)0.0001 (15)0.0126 (14)0.0054 (15)
C90.067 (2)0.0361 (15)0.0534 (17)0.0045 (15)0.0177 (15)0.0029 (14)
C100.084 (2)0.055 (2)0.0536 (18)0.0023 (18)0.0141 (17)0.0020 (16)
C110.106 (3)0.094 (3)0.068 (2)0.001 (3)0.036 (2)0.006 (2)
C120.091 (3)0.084 (3)0.100 (3)0.003 (2)0.045 (2)0.009 (3)
C130.072 (2)0.050 (2)0.116 (3)0.0031 (18)0.019 (2)0.003 (2)
C140.067 (2)0.0487 (19)0.074 (2)0.0003 (17)0.0115 (18)0.0031 (17)
C150.102 (3)0.085 (3)0.0549 (19)0.001 (2)0.005 (2)0.010 (2)
C160.129 (4)0.106 (4)0.094 (3)0.033 (3)0.002 (3)0.002 (3)
C170.194 (6)0.141 (5)0.098 (3)0.025 (5)0.035 (4)0.046 (3)
C180.065 (3)0.104 (4)0.171 (5)0.004 (3)0.014 (3)0.008 (3)
C190.081 (2)0.0380 (16)0.0480 (16)0.0005 (16)0.0063 (15)0.0009 (14)
C200.108 (3)0.054 (2)0.0495 (18)0.003 (2)0.0151 (18)0.0012 (16)
C210.133 (4)0.071 (3)0.064 (2)0.000 (3)0.015 (2)0.018 (2)
C220.134 (4)0.075 (3)0.065 (2)0.011 (3)0.012 (2)0.002 (2)
C230.095 (3)0.060 (2)0.069 (2)0.002 (2)0.0137 (19)0.0050 (19)
C240.089 (3)0.055 (2)0.062 (2)0.0030 (19)0.0032 (18)0.0035 (17)
C250.106 (3)0.077 (3)0.084 (3)0.002 (2)0.035 (2)0.020 (2)
C260.108 (4)0.135 (5)0.143 (4)0.044 (3)0.026 (3)0.002 (4)
C270.156 (4)0.141 (5)0.118 (4)0.004 (4)0.075 (3)0.037 (4)
C280.100 (3)0.092 (3)0.108 (3)0.003 (3)0.027 (3)0.011 (3)
O10.0767 (14)0.0461 (12)0.0482 (11)0.0025 (11)0.0015 (10)0.0051 (10)
O20.151 (3)0.0613 (16)0.0715 (15)0.0074 (16)0.0174 (16)0.0165 (14)
O30.0643 (13)0.0393 (11)0.0510 (11)0.0043 (9)0.0154 (10)0.0052 (9)
O40.0872 (17)0.0554 (13)0.0571 (13)0.0183 (13)0.0033 (12)0.0089 (11)
O50.113 (2)0.0729 (17)0.108 (2)0.0099 (18)0.0277 (17)0.0170 (18)
O60.0830 (14)0.0477 (12)0.0474 (11)0.0045 (11)0.0164 (10)0.0009 (10)
Geometric parameters (Å, º) top
C1—O21.195 (4)C15—H150.9800
C1—O11.374 (4)C16—H16A0.9600
C1—C21.455 (5)C16—H16B0.9600
C2—C31.316 (4)C16—H16C0.9600
C2—H20.9300C17—H17A0.9600
C3—C41.500 (4)C17—H17B0.9600
C3—H30.9300C17—H17C0.9600
C4—O31.395 (3)C18—H18A0.9600
C4—O11.454 (3)C18—H18B0.9600
C4—C71.528 (4)C18—H18C0.9600
C5—O51.196 (4)C19—O61.467 (3)
C5—O41.334 (4)C19—C241.514 (4)
C5—C61.491 (5)C19—C201.519 (4)
C6—C71.519 (4)C19—H190.9800
C6—H6A0.9700C20—C251.516 (5)
C6—H6B0.9700C20—C211.528 (5)
C7—C81.533 (4)C20—H200.9800
C7—H70.9800C21—C221.517 (6)
C8—O61.375 (3)C21—H21A0.9700
C8—O41.453 (4)C21—H21B0.9700
C8—H80.9800C22—C231.507 (5)
C9—O31.453 (3)C22—H22A0.9700
C9—C141.512 (4)C22—H22B0.9700
C9—C101.525 (4)C23—C241.531 (5)
C9—H90.9800C23—C281.545 (5)
C10—C151.525 (5)C23—H230.9800
C10—C111.540 (5)C24—H24A0.9700
C10—H100.9800C24—H24B0.9700
C11—C121.507 (5)C25—C271.524 (5)
C11—H11A0.9700C25—C261.528 (6)
C11—H11B0.9700C25—H250.9800
C12—C131.500 (5)C26—H26A0.9600
C12—H12A0.9700C26—H26B0.9600
C12—H12B0.9700C26—H26C0.9600
C13—C181.516 (5)C27—H27A0.9600
C13—C141.524 (5)C27—H27B0.9600
C13—H130.9800C27—H27C0.9600
C14—H14A0.9700C28—H28A0.9600
C14—H14B0.9700C28—H28B0.9600
C15—C171.516 (5)C28—H28C0.9600
C15—C161.524 (6)
O2—C1—O1121.6 (3)H16A—C16—H16B109.5
O2—C1—C2130.1 (3)C15—C16—H16C109.5
O1—C1—C2108.3 (3)H16A—C16—H16C109.5
C3—C2—C1109.2 (3)H16B—C16—H16C109.5
C3—C2—H2125.4C15—C17—H17A109.5
C1—C2—H2125.4C15—C17—H17B109.5
C2—C3—C4109.8 (3)H17A—C17—H17B109.5
C2—C3—H3125.1C15—C17—H17C109.5
C4—C3—H3125.1H17A—C17—H17C109.5
O3—C4—O1110.4 (2)H17B—C17—H17C109.5
O3—C4—C3114.5 (2)C13—C18—H18A109.5
O1—C4—C3103.5 (2)C13—C18—H18B109.5
O3—C4—C7105.9 (2)H18A—C18—H18B109.5
O1—C4—C7107.8 (2)C13—C18—H18C109.5
C3—C4—C7114.7 (2)H18A—C18—H18C109.5
O5—C5—O4121.6 (3)H18B—C18—H18C109.5
O5—C5—C6127.8 (4)O6—C19—C24111.1 (2)
O4—C5—C6110.6 (3)O6—C19—C20106.4 (2)
C5—C6—C7105.8 (3)C24—C19—C20112.4 (3)
C5—C6—H6A110.6O6—C19—H19108.9
C7—C6—H6A110.6C24—C19—H19108.9
C5—C6—H6B110.6C20—C19—H19108.9
C7—C6—H6B110.6C19—C20—C25113.3 (3)
H6A—C6—H6B108.7C19—C20—C21108.6 (3)
C6—C7—C4113.6 (3)C25—C20—C21114.5 (3)
C6—C7—C8104.3 (3)C19—C20—H20106.6
C4—C7—C8111.7 (2)C25—C20—H20106.6
C6—C7—H7109.0C21—C20—H20106.6
C4—C7—H7109.0C22—C21—C20113.9 (3)
C8—C7—H7109.0C22—C21—H21A108.8
O6—C8—O4110.2 (2)C20—C21—H21A108.8
O6—C8—C7109.5 (2)C22—C21—H21B108.8
O4—C8—C7105.8 (2)C20—C21—H21B108.8
O6—C8—H8110.4H21A—C21—H21B107.7
O4—C8—H8110.4C23—C22—C21111.6 (3)
C7—C8—H8110.4C23—C22—H22A109.3
O3—C9—C14108.9 (2)C21—C22—H22A109.3
O3—C9—C10107.1 (2)C23—C22—H22B109.3
C14—C9—C10112.3 (2)C21—C22—H22B109.3
O3—C9—H9109.5H22A—C22—H22B108.0
C14—C9—H9109.5C22—C23—C24108.9 (3)
C10—C9—H9109.5C22—C23—C28112.7 (3)
C9—C10—C15114.2 (3)C24—C23—C28110.7 (3)
C9—C10—C11109.0 (3)C22—C23—H23108.1
C15—C10—C11114.6 (3)C24—C23—H23108.1
C9—C10—H10106.1C28—C23—H23108.1
C15—C10—H10106.1C19—C24—C23111.5 (3)
C11—C10—H10106.1C19—C24—H24A109.3
C12—C11—C10112.3 (3)C23—C24—H24A109.3
C12—C11—H11A109.1C19—C24—H24B109.3
C10—C11—H11A109.1C23—C24—H24B109.3
C12—C11—H11B109.1H24A—C24—H24B108.0
C10—C11—H11B109.1C20—C25—C27112.9 (4)
H11A—C11—H11B107.9C20—C25—C26114.2 (4)
C13—C12—C11112.5 (3)C27—C25—C26110.3 (4)
C13—C12—H12A109.1C20—C25—H25106.3
C11—C12—H12A109.1C27—C25—H25106.3
C13—C12—H12B109.1C26—C25—H25106.3
C11—C12—H12B109.1C25—C26—H26A109.5
H12A—C12—H12B107.8C25—C26—H26B109.5
C12—C13—C18112.8 (4)H26A—C26—H26B109.5
C12—C13—C14109.2 (3)C25—C26—H26C109.5
C18—C13—C14111.1 (3)H26A—C26—H26C109.5
C12—C13—H13107.8H26B—C26—H26C109.5
C18—C13—H13107.8C25—C27—H27A109.5
C14—C13—H13107.8C25—C27—H27B109.5
C9—C14—C13114.1 (3)H27A—C27—H27B109.5
C9—C14—H14A108.7C25—C27—H27C109.5
C13—C14—H14A108.7H27A—C27—H27C109.5
C9—C14—H14B108.7H27B—C27—H27C109.5
C13—C14—H14B108.7C23—C28—H28A109.5
H14A—C14—H14B107.6C23—C28—H28B109.5
C17—C15—C10110.9 (4)H28A—C28—H28B109.5
C17—C15—C16109.6 (4)C23—C28—H28C109.5
C10—C15—C16114.7 (4)H28A—C28—H28C109.5
C17—C15—H15107.1H28B—C28—H28C109.5
C10—C15—H15107.1C1—O1—C4109.1 (3)
C16—C15—H15107.1C4—O3—C9119.1 (2)
C15—C16—H16A109.5C5—O4—C8112.1 (3)
C15—C16—H16B109.5C8—O6—C19114.9 (2)
O2—C1—C2—C3179.5 (4)C11—C10—C15—C1653.3 (4)
O1—C1—C2—C31.0 (4)O6—C19—C20—C2555.8 (4)
C1—C2—C3—C41.8 (4)C24—C19—C20—C25177.7 (3)
C2—C3—C4—O3122.0 (3)O6—C19—C20—C21175.7 (3)
C2—C3—C4—O11.8 (3)C24—C19—C20—C2153.8 (4)
C2—C3—C4—C7115.3 (3)C19—C20—C21—C2252.8 (4)
O5—C5—C6—C7176.8 (4)C25—C20—C21—C22179.4 (3)
O4—C5—C6—C72.7 (4)C20—C21—C22—C2355.7 (4)
C5—C6—C7—C4112.9 (3)C21—C22—C23—C2455.7 (4)
C5—C6—C7—C88.9 (3)C21—C22—C23—C28178.9 (3)
O3—C4—C7—C663.9 (3)O6—C19—C24—C23177.5 (2)
O1—C4—C7—C6177.9 (3)C20—C19—C24—C2358.3 (4)
C3—C4—C7—C663.2 (3)C22—C23—C24—C1957.5 (4)
O3—C4—C7—C853.6 (3)C28—C23—C24—C19178.1 (3)
O1—C4—C7—C864.5 (3)C19—C20—C25—C27173.2 (4)
C3—C4—C7—C8179.2 (3)C21—C20—C25—C2761.4 (5)
C6—C7—C8—O6106.9 (3)C19—C20—C25—C2659.7 (4)
C4—C7—C8—O6130.0 (3)C21—C20—C25—C2665.6 (4)
C6—C7—C8—O411.8 (3)O2—C1—O1—C4179.3 (3)
C4—C7—C8—O4111.3 (3)C2—C1—O1—C40.2 (3)
O3—C9—C10—C1558.6 (3)O3—C4—O1—C1124.2 (3)
C14—C9—C10—C15178.1 (3)C3—C4—O1—C11.2 (3)
O3—C9—C10—C11171.8 (3)C7—C4—O1—C1120.7 (3)
C14—C9—C10—C1152.3 (4)O1—C4—O3—C954.5 (3)
C9—C10—C11—C1254.9 (4)C3—C4—O3—C961.8 (3)
C15—C10—C11—C12175.7 (3)C7—C4—O3—C9170.9 (2)
C10—C11—C12—C1358.0 (5)C14—C9—O3—C493.9 (3)
C11—C12—C13—C18178.9 (4)C10—C9—O3—C4144.5 (2)
C11—C12—C13—C1454.8 (4)O5—C5—O4—C8175.2 (3)
O3—C9—C14—C13172.0 (3)C6—C5—O4—C85.3 (4)
C10—C9—C14—C1353.5 (4)O6—C8—O4—C5107.3 (3)
C12—C13—C14—C953.1 (4)C7—C8—O4—C511.0 (3)
C18—C13—C14—C9178.2 (3)O4—C8—O6—C1965.3 (3)
C9—C10—C15—C17161.8 (4)C7—C8—O6—C19178.7 (2)
C11—C10—C15—C1771.5 (5)C24—C19—O6—C870.9 (3)
C9—C10—C15—C1673.5 (4)C20—C19—O6—C8166.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.932.373.289 (5)168
C8—H8···O10.982.602.947 (4)101
C14—H14A···O10.972.473.069 (4)120
C15—H15···O30.982.472.915 (4)107
C19—H19···O40.982.512.888 (4)103
C25—H25···O60.982.452.853 (4)105
C28—H28A···O2ii0.962.593.405 (5)143
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC28H44O6
Mr476.63
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)12.3443 (15), 9.3455 (11), 12.5044 (15)
β (°) 92.990 (2)
V3)1440.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.21 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
10978, 2847, 1948
Rint0.037
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.10
No. of reflections2847
No. of parameters313
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.11

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.932.373.289 (5)167.9
C28—H28A···O2ii0.962.593.405 (5)142.9
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y+1/2, z+2.
 

Acknowledgements

This work was supported by the Young Core Teacher Foundation of Higher Education Institutions of Henan Province. We thank Jian-Ge Wang for the X-ray measurements.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFu, Y., Fan, X., Wang, J., Kang, H. & Chen, Q. (2003). Chin. Sci. Bull. 48, 323–328.  Web of Science CrossRef CAS Google Scholar
First citationHuang, H. & Chen, Q.-H. (1999). Tetrahedron Asymmetry, 10, 1295–1307.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. H. & Chen, Q.-H. (1999). Sci. China B, 42, 121–130.  Web of Science CrossRef CAS Google Scholar
First citationYu, Z.-L., Hu, S.-Q., Li, S.-L. & Fu, Y.-Q. (2008). Chin. J. Org. Chem. 28, 1119–1122.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds