organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Hexyl-3-iodo-9H-carbazole

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and Key Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: zhpzhp@263.net

(Received 12 December 2009; accepted 17 December 2009; online 24 December 2009)

In the title mol­ecule, C18H20IN, the tricyclic carbazole system is essentially planar with the two outer rings forming a dihedral angle of 0.43 (8)°. The crystal packing exhibits no short inter­molecular contacts.

Related literature

For the crystal structures of related carbazole derivatives, see: Zhou et al. (2007[Zhou, H. P., Wang, P., Hu, Z. J., Li, L., Chen, J. J., Cui, Y., Tian, Y. P., Wu, J. Y., Yang, J. X., Tao, X. T. & Jiang, M. H. (2007). Eur. J. Inorg. Chem. 13, 1854-1866.], 2008[Zhou, H. P., Lv, L. F., Wang, P. & Hu, R. T. (2008). Acta Cryst. E64, o1075.]); Chen et al. (2009[Chen, L., Cheng, W., Song, G.-L. & Zhu, H.-J. (2009). Acta Cryst. E65, o574.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20IN

  • Mr = 377.25

  • Monoclinic, P 21 /c

  • a = 10.7105 (2) Å

  • b = 4.6816 (10) Å

  • c = 33.9661 (18) Å

  • β = 105.106 (8)°

  • V = 1644.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.94 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.594, Tmax = 0.698

  • 13335 measured reflections

  • 2904 independent reflections

  • 2123 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.164

  • S = 1.14

  • 2904 reflections

  • 182 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our study of carbazole derivatives (Zhou et al., 2007, 2008) we present here the title compound, (I). In (I) (Fig. 1), the bond lengths and angles show normal values comparable with those observed in the related compounds (Zhou et al., 2008; Chen et al., 2009). Two outer rings form a dihedral angle of 0.43 (8) °. The crystal packing exhibits no essentially short intermolecular contacts.

Related literature top

For the crystal structures of related carbazole derivatives, see: Zhou et al. (2007, 2008); Chen et al. (2009).

Experimental top

A 50 ml round bottom flask was charged with 9-hexlylcarbazole (2.51 g, 10 mmol) and 10 ml e thanol. ICl (2.50 g, 15 mmol, dissolved in 4 ml ethanol) was added to the stirring solution at 343 k after 9-(hex-1-yl)-3-iodocarbazole was completely dissolved. At the end of the reaction was judged by TLC analysis after 2 h. The solution was filtered through filter paper and precipitates were obtained as a light blue solid in 89% (4.48 g) yield.

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.2-1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids shown at 30% probability level.
9-Hexyl-3-iodo-9H-carbazole top
Crystal data top
C18H20INF(000) = 752
Mr = 377.25Dx = 1.524 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 4151 reflections
a = 10.7105 (2) Åθ = 2.6–23.7°
b = 4.6816 (10) ŵ = 1.94 mm1
c = 33.9661 (18) ÅT = 298 K
β = 105.106 (8)°Bar, colourless
V = 1644.3 (4) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2904 independent reflections
Radiation source: fine-focus sealed tube2123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.594, Tmax = 0.698k = 55
13335 measured reflectionsl = 4040
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2904 reflections(Δ/σ)max = 0.002
182 parametersΔρmax = 1.03 e Å3
13 restraintsΔρmin = 0.61 e Å3
Crystal data top
C18H20INV = 1644.3 (4) Å3
Mr = 377.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7105 (2) ŵ = 1.94 mm1
b = 4.6816 (10) ÅT = 298 K
c = 33.9661 (18) Å0.30 × 0.20 × 0.20 mm
β = 105.106 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2904 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2123 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.698Rint = 0.024
13335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04013 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.14Δρmax = 1.03 e Å3
2904 reflectionsΔρmin = 0.61 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.28721 (3)0.22226 (10)0.854577 (12)0.1016 (3)
N10.2490 (4)0.7102 (7)0.85154 (11)0.0642 (10)
C10.0702 (5)0.6986 (10)0.88720 (15)0.0764 (14)
H10.10780.82880.90750.092*
C20.0462 (4)0.5812 (12)0.88584 (12)0.0784 (13)
H20.08870.63180.90540.094*
C30.1033 (4)0.3863 (11)0.85567 (12)0.0691 (11)
C40.0449 (4)0.3024 (9)0.82657 (13)0.0642 (11)
H40.08390.16990.80680.077*
C50.1625 (4)0.2277 (9)0.76745 (13)0.0642 (12)
H50.09310.10820.75610.077*
C60.2669 (5)0.2482 (9)0.75017 (15)0.0733 (14)
H60.26750.14060.72720.088*
C70.3691 (4)0.4269 (11)0.76693 (14)0.0752 (12)
H70.43730.43940.75480.090*
C80.3731 (4)0.5878 (10)0.80120 (12)0.0677 (11)
H80.44330.70530.81250.081*
C90.1323 (4)0.6213 (9)0.85775 (11)0.0588 (10)
C100.0761 (3)0.4209 (9)0.82713 (10)0.0550 (9)
C110.1639 (3)0.3892 (9)0.80204 (10)0.0543 (9)
C120.2694 (3)0.5687 (8)0.81814 (10)0.0544 (9)
C130.3408 (4)0.9010 (10)0.87894 (12)0.0705 (11)
H13A0.29381.03350.89170.085*
H13B0.38791.01100.86330.085*
C140.4357 (5)0.7305 (8)0.91164 (16)0.0714 (13)
H14A0.38780.62820.92780.086*
H14B0.47770.58990.89850.086*
C150.5381 (4)0.9110 (11)0.93974 (13)0.0745 (12)
H15A0.57771.03280.92330.089*
H15B0.49671.03400.95550.089*
C160.6420 (6)0.7450 (10)0.96843 (19)0.096 (2)
H16A0.67730.60770.95280.115*
H16B0.60370.63860.98680.115*
C170.7505 (5)0.9222 (13)0.99323 (18)0.118 (2)
H17A0.77971.05120.97510.142*
H17B0.71781.03781.01210.142*
C180.8625 (7)0.7562 (13)1.0167 (3)0.144 (3)
H18A0.92360.88261.03400.216*
H18B0.90300.66090.99830.216*
H18C0.83380.61701.03320.216*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0687 (3)0.1321 (5)0.1158 (4)0.00227 (17)0.0452 (3)0.0162 (2)
N10.054 (2)0.068 (2)0.065 (2)0.0032 (16)0.0064 (16)0.0033 (15)
C10.075 (3)0.086 (3)0.066 (3)0.011 (2)0.015 (2)0.003 (2)
C20.073 (3)0.104 (4)0.063 (2)0.018 (3)0.027 (2)0.009 (3)
C30.055 (2)0.088 (3)0.068 (2)0.012 (2)0.0223 (19)0.017 (2)
C40.055 (2)0.074 (3)0.061 (2)0.002 (2)0.0105 (18)0.0064 (19)
C50.052 (2)0.073 (3)0.064 (2)0.0023 (18)0.0103 (19)0.0076 (18)
C60.066 (3)0.086 (4)0.069 (3)0.001 (2)0.021 (2)0.009 (2)
C70.058 (2)0.087 (3)0.086 (3)0.003 (2)0.029 (2)0.008 (3)
C80.054 (2)0.069 (3)0.079 (3)0.006 (2)0.0164 (19)0.002 (2)
C90.055 (2)0.064 (2)0.054 (2)0.009 (2)0.0071 (17)0.0056 (19)
C100.046 (2)0.062 (2)0.0530 (19)0.0080 (19)0.0067 (15)0.0101 (18)
C110.0456 (19)0.060 (2)0.055 (2)0.0056 (18)0.0092 (15)0.0071 (17)
C120.0479 (19)0.057 (2)0.0555 (19)0.0039 (18)0.0089 (15)0.0050 (17)
C130.071 (3)0.062 (3)0.071 (2)0.005 (2)0.006 (2)0.006 (2)
C140.071 (3)0.062 (3)0.077 (3)0.004 (2)0.010 (2)0.0026 (19)
C150.068 (3)0.079 (3)0.075 (3)0.015 (2)0.014 (2)0.009 (2)
C160.099 (5)0.080 (4)0.089 (4)0.006 (3)0.009 (3)0.008 (2)
C170.118 (4)0.090 (4)0.121 (4)0.005 (4)0.014 (3)0.021 (3)
C180.116 (6)0.135 (6)0.155 (6)0.007 (4)0.011 (5)0.028 (4)
Geometric parameters (Å, º) top
I1—C32.106 (4)C9—C101.413 (6)
N1—C121.379 (5)C10—C111.431 (5)
N1—C91.385 (6)C11—C121.400 (5)
N1—C131.467 (5)C13—C141.522 (6)
C1—C21.351 (7)C13—H13A0.9700
C1—C91.386 (7)C13—H13B0.9700
C1—H10.9300C14—C151.511 (6)
C2—C31.389 (7)C14—H14A0.9700
C2—H20.9300C14—H14B0.9700
C3—C41.358 (6)C15—C161.492 (7)
C4—C101.405 (6)C15—H15A0.9700
C4—H40.9300C15—H15B0.9700
C5—C111.394 (6)C16—C171.496 (8)
C5—C61.395 (7)C16—H16A0.9700
C5—H50.9300C16—H16B0.9700
C6—C71.378 (7)C17—C181.477 (7)
C6—H60.9300C17—H17A0.9700
C7—C81.378 (6)C17—H17B0.9700
C7—H70.9300C18—H18A0.9600
C8—C121.381 (5)C18—H18B0.9600
C8—H80.9300C18—H18C0.9600
C12—N1—C9108.9 (3)C8—C12—C11122.1 (4)
C12—N1—C13126.2 (4)N1—C13—C14110.7 (4)
C9—N1—C13124.6 (4)N1—C13—H13A109.5
C2—C1—C9118.8 (5)C14—C13—H13A109.5
C2—C1—H1120.6N1—C13—H13B109.5
C9—C1—H1120.6C14—C13—H13B109.5
C1—C2—C3121.1 (4)H13A—C13—H13B108.1
C1—C2—H2119.4C15—C14—C13113.9 (4)
C3—C2—H2119.4C15—C14—H14A108.8
C4—C3—C2121.9 (4)C13—C14—H14A108.8
C4—C3—I1119.2 (4)C15—C14—H14B108.8
C2—C3—I1118.9 (3)C13—C14—H14B108.8
C3—C4—C10118.3 (4)H14A—C14—H14B107.7
C3—C4—H4120.9C16—C15—C14114.6 (4)
C10—C4—H4120.9C16—C15—H15A108.6
C11—C5—C6118.9 (4)C14—C15—H15A108.6
C11—C5—H5120.6C16—C15—H15B108.6
C6—C5—H5120.6C14—C15—H15B108.6
C7—C6—C5120.4 (4)H15A—C15—H15B107.6
C7—C6—H6119.8C15—C16—C17114.6 (4)
C5—C6—H6119.8C15—C16—H16A108.6
C6—C7—C8121.8 (4)C17—C16—H16A108.6
C6—C7—H7119.1C15—C16—H16B108.6
C8—C7—H7119.1C17—C16—H16B108.6
C7—C8—C12117.7 (4)H16A—C16—H16B107.6
C7—C8—H8121.1C18—C17—C16114.5 (5)
C12—C8—H8121.1C18—C17—H17A108.6
N1—C9—C1130.8 (4)C16—C17—H17A108.6
N1—C9—C10108.4 (4)C18—C17—H17B108.6
C1—C9—C10120.8 (4)C16—C17—H17B108.6
C4—C10—C9119.1 (4)H17A—C17—H17B107.6
C4—C10—C11134.2 (4)C17—C18—H18A109.5
C9—C10—C11106.7 (3)C17—C18—H18B109.5
C5—C11—C12119.0 (4)H18A—C18—H18B109.5
C5—C11—C10133.9 (4)C17—C18—H18C109.5
C12—C11—C10107.1 (3)H18A—C18—H18C109.5
N1—C12—C8128.9 (4)H18B—C18—H18C109.5
N1—C12—C11109.0 (3)
C9—C1—C2—C30.1 (7)C6—C5—C11—C10180.0 (4)
C1—C2—C3—C40.7 (7)C4—C10—C11—C50.1 (7)
C1—C2—C3—I1178.2 (3)C9—C10—C11—C5179.3 (4)
C2—C3—C4—C100.8 (6)C4—C10—C11—C12179.4 (4)
I1—C3—C4—C10178.1 (3)C9—C10—C11—C120.2 (4)
C11—C5—C6—C70.5 (7)C9—N1—C12—C8179.2 (4)
C5—C6—C7—C80.8 (7)C13—N1—C12—C85.2 (6)
C6—C7—C8—C121.1 (7)C9—N1—C12—C110.9 (4)
C12—N1—C9—C1179.5 (4)C13—N1—C12—C11175.0 (4)
C13—N1—C9—C15.4 (7)C7—C8—C12—N1178.6 (4)
C12—N1—C9—C100.8 (4)C7—C8—C12—C111.2 (6)
C13—N1—C9—C10175.0 (3)C5—C11—C12—N1178.9 (3)
C2—C1—C9—N1178.8 (4)C10—C11—C12—N10.7 (4)
C2—C1—C9—C100.8 (6)C5—C11—C12—C81.0 (6)
C3—C4—C10—C90.1 (5)C10—C11—C12—C8179.5 (4)
C3—C4—C10—C11179.1 (4)C12—N1—C13—C1484.0 (5)
N1—C9—C10—C4179.0 (3)C9—N1—C13—C1489.2 (5)
C1—C9—C10—C40.7 (6)N1—C13—C14—C15176.8 (4)
N1—C9—C10—C110.4 (4)C13—C14—C15—C16172.3 (5)
C1—C9—C10—C11179.9 (4)C14—C15—C16—C17174.0 (6)
C6—C5—C11—C120.6 (6)C15—C16—C17—C18170.8 (7)

Experimental details

Crystal data
Chemical formulaC18H20IN
Mr377.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.7105 (2), 4.6816 (10), 33.9661 (18)
β (°) 105.106 (8)
V3)1644.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.94
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.594, 0.698
No. of measured, independent and
observed [I > 2σ(I)] reflections
13335, 2904, 2123
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.164, 1.14
No. of reflections2904
No. of parameters182
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.61

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 50703001, 20771001), the Education Committee of Anhui Province (grant No. KJ2009A52), the Young Teacher Foundation of Institutions of Higher Education of An Hui Province (grant No. 2007jq1019), the Ministry of Education and the Person with Ability Foundation of Anhui University.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Cheng, W., Song, G.-L. & Zhu, H.-J. (2009). Acta Cryst. E65, o574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, H. P., Lv, L. F., Wang, P. & Hu, R. T. (2008). Acta Cryst. E64, o1075.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, H. P., Wang, P., Hu, Z. J., Li, L., Chen, J. J., Cui, Y., Tian, Y. P., Wu, J. Y., Yang, J. X., Tao, X. T. & Jiang, M. H. (2007). Eur. J. Inorg. Chem. 13, 1854–1866.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds