organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,5-Di­chloro­phen­yl)maleamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 20 November 2009; accepted 29 November 2009; online 4 December 2009)

In the title compound, C10H7Cl2NO3, the asymmetric unit contains four independent mol­ecules, which are linked to each other by N—H⋯O hydrogen bonds. The mol­ecular structure is stabilized by a short intra­molecular O—H⋯O hydrogen bond within each maleamic acid unit. In the crystal, the mol­ecules are linked into networks through N—H⋯O hydrogen bonds and inter­molecular C—Cl⋯O=C contacts [Cl⋯O = 3.0897 (12) and 3.0797 (13) Å].

Related literature

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda, Foro et al. (2009[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o873.]); Gowda, Tokarčík et al. (2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2945.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.]); Prasad et al. (2002[Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296-o1297.]); Shakuntala et al. (2009[Shakuntala, K., Gowda, B. T., Tokarčík, M. & Kožíšek, J. (2009). Acta Cryst. E65, o3119.]). For short halogen–oxygen contacts, see: Fourmigué (2009[Fourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36-45.]). Kubicki (2004[Kubicki, M. (2004). J. Mol. Struct. 698, 67-73.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7Cl2NO3

  • Mr = 260.07

  • Triclinic, [P \overline 1]

  • a = 8.13786 (12) Å

  • b = 16.5293 (3) Å

  • c = 17.4170 (3) Å

  • α = 103.4502 (17)°

  • β = 100.6466 (15)°

  • γ = 99.5964 (15)°

  • V = 2184.79 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 295 K

  • 0.59 × 0.51 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical (CrysAlis PRO, Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.728, Tmax = 0.887

  • 46919 measured reflections

  • 8204 independent reflections

  • 6694 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.09

  • 8204 reflections

  • 581 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O33i 0.86 2.07 2.9254 (17) 172
N21—H21⋯O13 0.86 2.05 2.8748 (18) 161
N31—H31⋯O43 0.86 2.09 2.9244 (19) 165
N41—H41⋯O23 0.86 2.07 2.9186 (18) 168
O12—H12A⋯O11 0.82 1.65 2.4680 (18) 175
O22—H22A⋯O21 0.82 1.64 2.4613 (17) 177
O32—H32A⋯O31 0.82 1.66 2.4772 (17) 177
O42—H42A⋯O41 0.82 1.65 2.4684 (18) 172
Symmetry code: (i) x+1, y-1, z-1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, as a part of studying the effect of ring and side chain substitutions on the crystal structures of biologically significant amides (Gowda, Foro et al.,2009; Gowda, Tokarčík et al., 2009; Shakuntala et al., 2009; Prasad et al., 2002), the crystal structure of N-(3,5-dichlorophenyl)maleamic acid (I) has been determined.

The asymmetric unit of (I) contains four independent molecules linked to each other through N-H···O intermolecular hydrogen bonds(Table 1, Fig. 1). The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other and those of the amide O atom and the carbonyl O atom of the acid segment are also anti to each other. But the amide O atom is anti to the H atom attached to the adjacent C atom, while the carboxyl O atom is syn to the H atom attached to its adjacent C atom (Fig.1). In the structure of (I), relatively rare anti conformation of the C=O and O—H bonds of the acid group has been observed, similar to that obsrved in N-phenylmaleamic acid (Lo & Ng, 2009), N-(3,4-dimethylphenyl)maleamic acid, N-(2,4,6-trimethylphenyl)- maleamic acid (Gowda,Tokarčík et al., 2009) and N-(2,5-dichlorophenyl)maleamic acid (Shakuntala et al., 2009).

Each maleamic unit includes a short intramolecular hydrogen O—H···O bond (Table 1). Bond lengths C12–C13 =1.329 (2), C22–C23 =1.336 (2), C32–C33 =1.335 (2) and C42–C43 =1.329 (2)Å clearly indicate the double bond character.

The dihedral angles between the dichloro-substituted phenyl ring and the amido group –NHCO– are 4.5 (3), 8.4 (2), 10.4 (2) and 8.3 (3)° in the four independent molecules.

In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into infinite chain running parallel to the [-1 1 1] vector. The relatively short Cl···O contacts build up a two-dimensional network. Part of the crystal structure is shown in Fig. 2. The molecule containing the amido atom N11 forms an inversion dimer, which is is stabilized by two short Cl···O contacts with the length of 3.0897 (12)Å. Another short Cl···O contact between the atoms Cl12 and O41(iii) has the length of 3.0797 (13) Å. [Symmetry code (iii): x, y-1, z-1].

Our data for the C–Cl···O halogen bonds are in agreement with the observations of others (Kubicki, 2004; Fourmigué 2009).

Related literature top

For sudies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda, Foro et al. (2009); Gowda, Tokarčík et al. (2009); Lo & Ng (2009); Prasad et al. (2002); Shakuntala et al. (2009). For short halogen–oxygen contacts, see: Fourmigué (2009). Kubicki (2004)

Experimental top

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 3,5-dichloroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was warmed with stirring for over 30 min and set aside for an additional 30 min at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,5-dichloroaniline. The resultant solid N-(3,5-dichlorophenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. Colourless single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement top

All H atoms were visible in difference maps and further placed in calculated positions (C–H = 0.93 Å, N–H = 0.86 Å, N–H = 0.82 Å) and refined using the riding model. The Uiso(H) values were set at 1.2Ueq(C, N, O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of crystal structure of (I) showing the chain of molecules linked by N–H···O hydrogen bonds (represented by dashed lines). The molecule with the amido atom N11 forms an inversion dimer stabilized via short Cl···O contacts involving the atoms Cl11 and O11.H atoms not involved in hydrogen bonding were omitted for clarity.[Symmetry code (ii): -x, -y, -z]
N-(3,5-Dichlorophenyl)maleamic acid top
Crystal data top
C10H7Cl2NO3Z = 8
Mr = 260.07F(000) = 1056
Triclinic, P1Dx = 1.581 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.13786 (12) ÅCell parameters from 29193 reflections
b = 16.5293 (3) Åθ = 2.0–29.5°
c = 17.4170 (3) ŵ = 0.58 mm1
α = 103.4502 (17)°T = 295 K
β = 100.6466 (15)°Block, colourless
γ = 99.5964 (15)°0.59 × 0.51 × 0.22 mm
V = 2184.79 (7) Å3
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
8204 independent reflections
Graphite monochromator6694 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.017
ω scansθmax = 25.6°, θmin = 2.0°
Absorption correction: analytical
(CrysAlis PRO, Oxford Diffraction, 2009)
h = 99
Tmin = 0.728, Tmax = 0.887k = 2020
46919 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.4698P]
where P = (Fo2 + 2Fc2)/3
8204 reflections(Δ/σ)max = 0.001
581 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C10H7Cl2NO3γ = 99.5964 (15)°
Mr = 260.07V = 2184.79 (7) Å3
Triclinic, P1Z = 8
a = 8.13786 (12) ÅMo Kα radiation
b = 16.5293 (3) ŵ = 0.58 mm1
c = 17.4170 (3) ÅT = 295 K
α = 103.4502 (17)°0.59 × 0.51 × 0.22 mm
β = 100.6466 (15)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
8204 independent reflections
Absorption correction: analytical
(CrysAlis PRO, Oxford Diffraction, 2009)
6694 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.887Rint = 0.017
46919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.09Δρmax = 0.45 e Å3
8204 reflectionsΔρmin = 0.38 e Å3
581 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl110.12991 (7)0.13131 (3)0.04861 (4)0.07207 (17)
Cl120.08943 (6)0.35296 (3)0.26076 (3)0.05786 (14)
O110.38762 (19)0.06550 (8)0.04674 (10)0.0728 (5)
O120.51265 (18)0.21919 (9)0.01320 (10)0.0688 (4)
H12A0.46690.16840.00540.103*
O130.72670 (19)0.30909 (8)0.00178 (9)0.0716 (4)
N110.42407 (17)0.04601 (8)0.14019 (8)0.0403 (3)
H110.49040.06250.17090.048*
C110.4692 (2)0.03579 (11)0.09563 (10)0.0439 (4)
C120.6215 (2)0.08687 (11)0.10927 (11)0.0473 (4)
H120.67670.05760.14530.057*
C130.6907 (2)0.16943 (11)0.07690 (11)0.0499 (4)
H130.78790.18860.09410.060*
C140.6420 (2)0.23697 (11)0.01833 (11)0.0465 (4)
C150.2796 (2)0.10786 (10)0.14214 (9)0.0369 (3)
C160.1585 (2)0.08976 (11)0.09764 (11)0.0448 (4)
H160.17010.03540.06410.054*
C170.0209 (2)0.15445 (11)0.10443 (11)0.0449 (4)
C180.0017 (2)0.23577 (11)0.15278 (10)0.0424 (4)
H180.09490.27850.15580.051*
C190.1201 (2)0.25142 (10)0.19677 (10)0.0391 (4)
C200.2594 (2)0.18954 (10)0.19278 (10)0.0382 (4)
H200.33900.20190.22330.046*
Cl210.84361 (9)0.77742 (3)0.13652 (4)0.07855 (19)
Cl220.89486 (6)0.54211 (3)0.12381 (3)0.05692 (13)
O210.54916 (18)0.52453 (8)0.20423 (8)0.0567 (3)
O220.4351 (2)0.49126 (8)0.31739 (8)0.0650 (4)
H22A0.47120.50370.27970.097*
O230.36320 (18)0.37768 (9)0.35801 (8)0.0615 (4)
N210.63526 (17)0.45503 (8)0.09578 (8)0.0396 (3)
H210.63860.40520.06800.048*
C210.5655 (2)0.45722 (10)0.16001 (10)0.0391 (4)
C220.5086 (2)0.37266 (11)0.17328 (10)0.0420 (4)
H220.51740.32610.13360.050*
C230.4463 (2)0.35426 (11)0.23449 (10)0.0428 (4)
H230.41920.29630.23060.051*
C240.4128 (2)0.40956 (12)0.30745 (10)0.0446 (4)
C250.7041 (2)0.52430 (10)0.06799 (10)0.0381 (4)
C260.7260 (2)0.60907 (11)0.11038 (10)0.0436 (4)
H260.68860.62360.15810.052*
C270.8047 (2)0.67118 (11)0.07996 (11)0.0488 (4)
C280.8582 (2)0.65292 (12)0.00858 (11)0.0491 (4)
H280.91050.69590.01080.059*
C290.8309 (2)0.56830 (12)0.03288 (10)0.0428 (4)
C300.7562 (2)0.50368 (11)0.00454 (10)0.0407 (4)
H300.74070.44700.03350.049*
Cl310.55958 (9)1.27986 (3)0.76423 (5)0.0959 (2)
Cl320.82403 (7)1.05115 (3)0.58042 (4)0.07005 (16)
O310.12442 (17)1.02362 (8)0.74663 (8)0.0571 (3)
O320.15047 (18)0.99017 (9)0.78660 (10)0.0684 (4)
H32A0.05811.00260.77500.103*
O330.36446 (17)0.87993 (9)0.75591 (9)0.0645 (4)
N310.25893 (18)0.96191 (9)0.65386 (9)0.0436 (3)
H310.25520.91520.61850.052*
C310.1331 (2)0.96077 (10)0.69387 (10)0.0411 (4)
C320.0088 (2)0.87797 (11)0.67137 (10)0.0433 (4)
H320.03550.83330.63590.052*
C330.1363 (2)0.85857 (11)0.69501 (11)0.0450 (4)
H330.19290.80160.67430.054*
C340.2235 (2)0.91137 (12)0.74824 (11)0.0485 (4)
C350.3974 (2)1.03050 (10)0.66258 (10)0.0412 (4)
C360.4083 (2)1.11348 (11)0.70717 (11)0.0496 (4)
H360.32361.12690.73400.060*
C370.5476 (3)1.17524 (11)0.71059 (12)0.0547 (5)
C380.6779 (2)1.15837 (12)0.67291 (12)0.0549 (5)
H380.77191.20110.67700.066*
C390.6626 (2)1.07548 (11)0.62901 (12)0.0487 (4)
C400.5251 (2)1.01120 (11)0.62243 (11)0.0461 (4)
H400.51740.95590.59180.055*
Cl410.02282 (7)0.37735 (4)0.72019 (3)0.06395 (15)
Cl420.24811 (9)0.16293 (3)0.52385 (4)0.07410 (17)
O410.1923 (2)0.57709 (8)0.57929 (9)0.0737 (5)
O420.2233 (2)0.73192 (9)0.59737 (10)0.0750 (5)
H42A0.21700.68150.59570.112*
O430.3060 (2)0.81990 (8)0.53013 (9)0.0711 (4)
N410.24994 (17)0.46304 (8)0.49887 (8)0.0410 (3)
H410.28500.44500.45570.049*
C410.2470 (2)0.54591 (10)0.52001 (10)0.0425 (4)
C420.3126 (2)0.59666 (11)0.46873 (10)0.0432 (4)
H420.34810.56680.42480.052*
C430.3275 (2)0.67973 (11)0.47709 (11)0.0439 (4)
H430.37360.69880.43770.053*
C440.2847 (2)0.74820 (11)0.53737 (11)0.0469 (4)
C450.2013 (2)0.40192 (10)0.54029 (10)0.0385 (4)
C460.1217 (2)0.41867 (11)0.60458 (10)0.0442 (4)
H460.09550.47160.62200.053*
C470.0823 (2)0.35548 (12)0.64202 (10)0.0455 (4)
C480.1202 (2)0.27686 (12)0.61936 (11)0.0501 (4)
H480.09490.23550.64620.060*
C490.1980 (2)0.26185 (11)0.55458 (11)0.0474 (4)
C500.2381 (2)0.32229 (11)0.51464 (10)0.0429 (4)
H500.28920.31000.47100.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl110.0741 (3)0.0627 (3)0.0933 (4)0.0149 (3)0.0646 (3)0.0126 (3)
Cl120.0638 (3)0.0411 (2)0.0622 (3)0.0011 (2)0.0306 (2)0.0035 (2)
O110.0714 (9)0.0484 (8)0.0902 (10)0.0030 (7)0.0571 (8)0.0163 (7)
O120.0658 (9)0.0464 (8)0.0823 (10)0.0011 (6)0.0405 (8)0.0155 (7)
O130.0817 (10)0.0399 (8)0.0843 (10)0.0005 (7)0.0403 (8)0.0067 (7)
N110.0392 (7)0.0373 (7)0.0449 (8)0.0084 (6)0.0224 (6)0.0021 (6)
C110.0439 (9)0.0402 (9)0.0457 (10)0.0085 (7)0.0197 (8)0.0013 (7)
C120.0458 (9)0.0426 (9)0.0522 (10)0.0093 (8)0.0263 (8)0.0011 (8)
C130.0464 (10)0.0436 (10)0.0564 (11)0.0031 (8)0.0254 (9)0.0015 (8)
C140.0483 (10)0.0400 (10)0.0467 (10)0.0091 (8)0.0138 (8)0.0014 (8)
C150.0374 (8)0.0384 (8)0.0378 (8)0.0094 (7)0.0155 (7)0.0097 (7)
C160.0499 (10)0.0393 (9)0.0482 (10)0.0107 (7)0.0257 (8)0.0055 (7)
C170.0474 (9)0.0476 (10)0.0494 (10)0.0155 (8)0.0301 (8)0.0137 (8)
C180.0420 (9)0.0423 (9)0.0464 (10)0.0060 (7)0.0195 (8)0.0142 (8)
C190.0444 (9)0.0367 (8)0.0371 (9)0.0101 (7)0.0141 (7)0.0073 (7)
C200.0389 (8)0.0412 (9)0.0383 (9)0.0125 (7)0.0176 (7)0.0086 (7)
Cl210.1164 (5)0.0404 (3)0.0771 (4)0.0009 (3)0.0463 (3)0.0053 (2)
Cl220.0648 (3)0.0712 (3)0.0456 (3)0.0192 (2)0.0299 (2)0.0205 (2)
O210.0796 (9)0.0398 (7)0.0569 (8)0.0105 (6)0.0441 (7)0.0048 (6)
O220.0947 (11)0.0524 (8)0.0509 (8)0.0086 (7)0.0460 (8)0.0027 (6)
O230.0785 (9)0.0694 (9)0.0479 (7)0.0176 (7)0.0363 (7)0.0195 (7)
N210.0481 (8)0.0355 (7)0.0384 (7)0.0110 (6)0.0213 (6)0.0062 (6)
C210.0393 (8)0.0412 (9)0.0369 (8)0.0082 (7)0.0161 (7)0.0053 (7)
C220.0486 (9)0.0392 (9)0.0395 (9)0.0103 (7)0.0207 (8)0.0046 (7)
C230.0453 (9)0.0417 (9)0.0434 (9)0.0087 (7)0.0185 (8)0.0096 (7)
C240.0418 (9)0.0541 (11)0.0377 (9)0.0076 (8)0.0163 (7)0.0087 (8)
C250.0348 (8)0.0431 (9)0.0390 (9)0.0095 (7)0.0124 (7)0.0124 (7)
C260.0469 (9)0.0433 (9)0.0414 (9)0.0086 (7)0.0183 (8)0.0079 (7)
C270.0556 (11)0.0399 (9)0.0498 (10)0.0067 (8)0.0178 (9)0.0083 (8)
C280.0523 (10)0.0485 (10)0.0506 (11)0.0068 (8)0.0193 (9)0.0186 (8)
C290.0386 (9)0.0576 (11)0.0378 (9)0.0142 (8)0.0152 (7)0.0160 (8)
C300.0422 (9)0.0440 (9)0.0377 (9)0.0131 (7)0.0137 (7)0.0087 (7)
Cl310.1081 (5)0.0399 (3)0.1330 (6)0.0019 (3)0.0686 (4)0.0086 (3)
Cl320.0627 (3)0.0547 (3)0.1095 (5)0.0189 (2)0.0499 (3)0.0271 (3)
O310.0623 (8)0.0436 (7)0.0635 (8)0.0072 (6)0.0343 (7)0.0014 (6)
O320.0652 (9)0.0518 (8)0.0915 (11)0.0138 (7)0.0504 (8)0.0001 (7)
O330.0522 (8)0.0674 (9)0.0782 (10)0.0122 (7)0.0375 (7)0.0113 (7)
N310.0513 (8)0.0350 (7)0.0469 (8)0.0084 (6)0.0234 (7)0.0070 (6)
C310.0454 (9)0.0399 (9)0.0425 (9)0.0141 (7)0.0181 (8)0.0101 (7)
C320.0480 (9)0.0381 (9)0.0457 (9)0.0127 (7)0.0201 (8)0.0058 (7)
C330.0466 (9)0.0407 (9)0.0484 (10)0.0093 (7)0.0191 (8)0.0076 (8)
C340.0488 (10)0.0524 (11)0.0527 (11)0.0176 (8)0.0249 (9)0.0153 (9)
C350.0481 (9)0.0390 (9)0.0409 (9)0.0102 (7)0.0163 (7)0.0143 (7)
C360.0581 (11)0.0413 (9)0.0537 (11)0.0109 (8)0.0260 (9)0.0106 (8)
C370.0675 (12)0.0364 (9)0.0604 (12)0.0077 (8)0.0254 (10)0.0075 (8)
C380.0542 (11)0.0417 (10)0.0703 (13)0.0037 (8)0.0220 (10)0.0172 (9)
C390.0502 (10)0.0453 (10)0.0608 (11)0.0153 (8)0.0240 (9)0.0217 (9)
C400.0529 (10)0.0376 (9)0.0540 (11)0.0131 (8)0.0221 (8)0.0143 (8)
Cl410.0705 (3)0.0751 (3)0.0505 (3)0.0069 (3)0.0327 (2)0.0171 (2)
Cl420.1134 (5)0.0526 (3)0.0719 (4)0.0381 (3)0.0316 (3)0.0251 (3)
O410.1289 (13)0.0460 (8)0.0721 (9)0.0321 (8)0.0727 (10)0.0180 (7)
O420.1258 (13)0.0440 (8)0.0763 (10)0.0302 (9)0.0658 (10)0.0158 (7)
O430.1044 (12)0.0400 (8)0.0795 (10)0.0188 (7)0.0456 (9)0.0158 (7)
N410.0503 (8)0.0369 (7)0.0386 (7)0.0099 (6)0.0229 (6)0.0058 (6)
C410.0498 (10)0.0388 (9)0.0419 (9)0.0124 (7)0.0206 (8)0.0070 (7)
C420.0509 (10)0.0430 (9)0.0402 (9)0.0142 (8)0.0226 (8)0.0077 (7)
C430.0477 (9)0.0433 (9)0.0453 (10)0.0106 (7)0.0200 (8)0.0135 (8)
C440.0528 (10)0.0375 (10)0.0507 (10)0.0097 (8)0.0177 (8)0.0083 (8)
C450.0377 (8)0.0378 (8)0.0381 (9)0.0043 (7)0.0111 (7)0.0077 (7)
C460.0455 (9)0.0420 (9)0.0443 (9)0.0063 (7)0.0175 (8)0.0070 (8)
C470.0408 (9)0.0547 (11)0.0373 (9)0.0012 (8)0.0125 (7)0.0094 (8)
C480.0530 (10)0.0519 (11)0.0455 (10)0.0040 (8)0.0106 (8)0.0194 (8)
C490.0526 (10)0.0426 (9)0.0461 (10)0.0119 (8)0.0090 (8)0.0110 (8)
C500.0453 (9)0.0436 (9)0.0392 (9)0.0098 (7)0.0135 (7)0.0072 (7)
Geometric parameters (Å, º) top
Cl11—C171.7383 (15)Cl31—C371.7410 (18)
Cl12—C191.7347 (16)Cl32—C391.7412 (18)
O11—C111.2370 (19)O31—C311.2383 (19)
O12—C141.297 (2)O32—C341.299 (2)
O12—H12A0.8200O32—H32A0.8200
O13—C141.209 (2)O33—C341.222 (2)
N11—C111.344 (2)N31—C311.341 (2)
N11—C151.413 (2)N31—C351.417 (2)
N11—H110.8600N31—H310.8600
C11—C121.469 (2)C31—C321.481 (2)
C12—C131.329 (2)C32—C331.335 (2)
C12—H120.9300C32—H320.9300
C13—C141.487 (2)C33—C341.483 (2)
C13—H130.9300C33—H330.9300
C15—C161.390 (2)C35—C361.390 (2)
C15—C201.395 (2)C35—C401.395 (2)
C16—C171.380 (2)C36—C371.375 (3)
C16—H160.9300C36—H360.9300
C17—C181.372 (2)C37—C381.380 (3)
C18—C191.382 (2)C38—C391.378 (3)
C18—H180.9300C38—H380.9300
C19—C201.374 (2)C39—C401.376 (2)
C20—H200.9300C40—H400.9300
Cl21—C271.7462 (18)Cl41—C471.7382 (17)
Cl22—C291.7400 (16)Cl42—C491.7383 (18)
O21—C211.2399 (19)O41—C411.236 (2)
O22—C241.298 (2)O42—C441.301 (2)
O22—H22A0.8200O42—H42A0.8200
O23—C241.222 (2)O43—C441.208 (2)
N21—C211.341 (2)N41—C411.339 (2)
N21—C251.415 (2)N41—C451.417 (2)
N21—H210.8600N41—H410.8600
C21—C221.482 (2)C41—C421.470 (2)
C22—C231.336 (2)C42—C431.329 (2)
C22—H220.9300C42—H420.9300
C23—C241.482 (2)C43—C441.490 (2)
C23—H230.9300C43—H430.9300
C25—C261.388 (2)C45—C501.389 (2)
C25—C301.392 (2)C45—C461.391 (2)
C26—C271.380 (2)C46—C471.379 (2)
C26—H260.9300C46—H460.9300
C27—C281.377 (2)C47—C481.371 (3)
C28—C291.376 (2)C48—C491.386 (3)
C28—H280.9300C48—H480.9300
C29—C301.376 (2)C49—C501.374 (2)
C30—H300.9300C50—H500.9300
C14—O12—H12A109.5C34—O32—H32A109.5
C11—N11—C15127.15 (13)C31—N31—C35128.06 (14)
C11—N11—H11116.4C31—N31—H31116.0
C15—N11—H11116.4C35—N31—H31116.0
O11—C11—N11122.01 (15)O31—C31—N31122.38 (16)
O11—C11—C12122.74 (15)O31—C31—C32122.95 (15)
N11—C11—C12115.25 (13)N31—C31—C32114.65 (14)
C13—C12—C11128.48 (15)C33—C32—C31128.94 (15)
C13—C12—H12115.8C33—C32—H32115.5
C11—C12—H12115.8C31—C32—H32115.5
C12—C13—C14132.18 (16)C32—C33—C34131.68 (17)
C12—C13—H13113.9C32—C33—H33114.2
C14—C13—H13113.9C34—C33—H33114.2
O13—C14—O12119.44 (16)O33—C34—O32120.35 (16)
O13—C14—C13119.61 (16)O33—C34—C33119.38 (17)
O12—C14—C13120.92 (15)O32—C34—C33120.27 (15)
C16—C15—C20120.07 (15)C36—C35—C40120.31 (16)
C16—C15—N11122.84 (14)C36—C35—N31123.30 (15)
C20—C15—N11117.07 (13)C40—C35—N31116.38 (15)
C17—C16—C15118.37 (15)C37—C36—C35118.29 (16)
C17—C16—H16120.8C37—C36—H36120.9
C15—C16—H16120.8C35—C36—H36120.9
C18—C17—C16123.10 (15)C36—C37—C38123.09 (17)
C18—C17—Cl11118.80 (13)C36—C37—Cl31118.59 (14)
C16—C17—Cl11118.10 (13)C38—C37—Cl31118.31 (14)
C17—C18—C19117.05 (15)C39—C38—C37117.04 (17)
C17—C18—H18121.5C39—C38—H38121.5
C19—C18—H18121.5C37—C38—H38121.5
C20—C19—C18122.50 (15)C40—C39—C38122.49 (16)
C20—C19—Cl12119.90 (12)C40—C39—Cl32118.83 (14)
C18—C19—Cl12117.58 (12)C38—C39—Cl32118.68 (14)
C19—C20—C15118.89 (14)C39—C40—C35118.75 (16)
C19—C20—H20120.6C39—C40—H40120.6
C15—C20—H20120.6C35—C40—H40120.6
C24—O22—H22A109.5C44—O42—H42A109.5
C21—N21—C25128.20 (14)C41—N41—C45126.76 (13)
C21—N21—H21115.9C41—N41—H41116.6
C25—N21—H21115.9C45—N41—H41116.6
O21—C21—N21122.61 (15)O41—C41—N41121.40 (16)
O21—C21—C22122.90 (14)O41—C41—C42122.65 (15)
N21—C21—C22114.48 (13)N41—C41—C42115.95 (13)
C23—C22—C21128.81 (15)C43—C42—C41128.27 (15)
C23—C22—H22115.6C43—C42—H42115.9
C21—C22—H22115.6C41—C42—H42115.9
C22—C23—C24131.60 (16)C42—C43—C44132.34 (16)
C22—C23—H23114.2C42—C43—H43113.8
C24—C23—H23114.2C44—C43—H43113.8
O23—C24—O22120.20 (16)O43—C44—O42119.42 (16)
O23—C24—C23119.55 (17)O43—C44—C43119.52 (17)
O22—C24—C23120.24 (15)O42—C44—C43121.06 (16)
C26—C25—C30120.11 (15)C50—C45—C46119.75 (15)
C26—C25—N21123.43 (14)C50—C45—N41117.07 (14)
C30—C25—N21116.42 (14)C46—C45—N41123.17 (15)
C27—C26—C25118.29 (15)C47—C46—C45118.83 (16)
C27—C26—H26120.9C47—C46—H46120.6
C25—C26—H26120.9C45—C46—H46120.6
C28—C27—C26123.00 (16)C48—C47—C46122.88 (16)
C28—C27—Cl21118.79 (14)C48—C47—Cl41119.41 (14)
C26—C27—Cl21118.18 (13)C46—C47—Cl41117.70 (14)
C29—C28—C27117.17 (16)C47—C48—C49116.89 (16)
C29—C28—H28121.4C47—C48—H48121.6
C27—C28—H28121.4C49—C48—H48121.6
C30—C29—C28122.29 (15)C50—C49—C48122.50 (16)
C30—C29—Cl22118.87 (13)C50—C49—Cl42119.14 (14)
C28—C29—Cl22118.84 (13)C48—C49—Cl42118.36 (14)
C29—C30—C25119.10 (15)C49—C50—C45119.13 (15)
C29—C30—H30120.4C49—C50—H50120.4
C25—C30—H30120.4C45—C50—H50120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O33i0.862.072.9254 (17)172
N21—H21···O130.862.052.8748 (18)161
N31—H31···O430.862.092.9244 (19)165
N41—H41···O230.862.072.9186 (18)168
O12—H12A···O110.821.652.4680 (18)175
O22—H22A···O210.821.642.4613 (17)177
O32—H32A···O310.821.662.4772 (17)177
O42—H42A···O410.821.652.4684 (18)172
Symmetry code: (i) x+1, y1, z1.

Experimental details

Crystal data
Chemical formulaC10H7Cl2NO3
Mr260.07
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.13786 (12), 16.5293 (3), 17.4170 (3)
α, β, γ (°)103.4502 (17), 100.6466 (15), 99.5964 (15)
V3)2184.79 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.59 × 0.51 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO, Oxford Diffraction, 2009)
Tmin, Tmax0.728, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
46919, 8204, 6694
Rint0.017
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.09
No. of reflections8204
No. of parameters581
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.38

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O33i0.862.072.9254 (17)171.6
N21—H21···O130.862.052.8748 (18)160.5
N31—H31···O430.862.092.9244 (19)165.0
N41—H41···O230.862.072.9186 (18)168.0
O12—H12A···O110.821.652.4680 (18)175.3
O22—H22A···O210.821.642.4613 (17)177.0
O32—H32A···O310.821.662.4772 (17)176.8
O42—H42A···O410.821.652.4684 (18)172.4
Symmetry code: (i) x+1, y1, z1.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36–45.  Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKubicki, M. (2004). J. Mol. Struct. 698, 67–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPrasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296–o1297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Gowda, B. T., Tokarčík, M. & Kožíšek, J. (2009). Acta Cryst. E65, o3119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds